Final Examination Solutions

CS 313H

1a. [5] Use a truth table to determine for which truth values of p, q, and $r(p \vee \sim r) \Rightarrow(\sim q \wedge p)$ is true.

p	q	r	$\sim r$	$\sim q$	$p \vee \sim r$	$\sim q \wedge p$	$(p \vee \sim r) \Rightarrow(\sim q \wedge p)$
F	F	F	T	T	T	F	F
F	F	T	F	T	F	F	T
F	T	F	T	F	T	F	F
F	T	T	F	F	F	F	T
T	F	F	T	T	T	T	T
T	F	T	F	T	T	T	T
T	T	F	T	F	T	F	F
T	T	T	F	F	T	F	F

1a. [5] Use the information to construct a logical expression $\exp (p, q, r)$ so that you have

$$
\exp (p, q, r)=(\sim p \wedge r) \vee(p \wedge \sim q)
$$

2. [20] Using sentential calculus (with a four column format), prove that the conclusion $\sim p \wedge \sim q$ follows from premises: $(p \Rightarrow r) \wedge(q \Rightarrow s),(s \wedge r) \Rightarrow t, \sim t$ and $\sim(\sim p \vee \sim q)$.
$\left\{P r_{1}\right\}$
(1.) $(p \Rightarrow r) \wedge(q \Rightarrow s) \quad \mathrm{P}$
$\left\{P r_{2}\right\}$
(2.) $(s \wedge r) \Rightarrow t \quad \mathrm{P}$
$\left\{P r_{3}\right\}$
(3.) $\sim t$
P
$\left\{P r_{4}\right\}$
(4.) $\sim(\sim p \vee \sim q)$
P
$\left\{P r_{4}\right\}$
(5.) $\sim \sim p \wedge \sim \sim q$
DeM (4)
$\left\{P r_{4}\right\}$
(6.) $p \wedge q$
DN (5)
$\left\{P r_{4}\right\}$
(7.) p
$\left\{P r_{1}\right\}$
(8.) $p \Rightarrow r \quad \operatorname{Simp}(1)$
$\left\{P r_{1}, P r_{4}\right\}$
(9.) r
$\left\{P r_{4}\right\}$
(10.) q
MP (7), (8)
$\left\{P r_{1}\right\}$
(11.) $q \Rightarrow s$
Simp (6)
$\left\{P r_{1}, P r_{4}\right\}$
(12.) s
$\left\{P r_{1}, P r_{4}\right\}$
(13.) $s \wedge r$
Simp (1)
$\left\{P r_{1}, P r_{2}, P r_{4}\right\}$
(14.) t
$\left\{P r_{1}, P r_{2}, P r_{3}, P r_{4}\right\}$
(15.) $t \wedge \sim t$
MP (10), (11)
Add (9), (12)
MP (13), (2)
$\left\{P r_{1}, P r_{2}, P r_{3}, P r_{4}\right\}$
(16.) $\sim p \wedge \sim q$
Add (14), (3)
Clav (15)
3. [15] Prove that the conclusion $\sim q \wedge p$ follows from the premises $(p \Rightarrow q) \Rightarrow r$ and $\sim r$. First convert the premise and the negation of the conclusion into Conjunctive Normal Form, and then employ a resolution proof to get a contradiction.

$$
\begin{aligned}
& (p \Rightarrow q) \Rightarrow r \\
& \sim(p \Rightarrow q) \vee r \\
& \sim(\sim p \vee q) \vee r \\
& (\sim \sim p \wedge \sim q) \vee r \\
& (p \wedge \sim q) \vee r \\
& (p \vee r) \wedge(\sim q \vee r) \\
& \sim \\
& \sim(\sim q \wedge p) \\
& \sim \sim q \vee \sim p \\
& q \vee \sim p \\
& \\
& \text { 1. } p \vee r \\
& \begin{array}{ll}
\text { 2. } \sim q \vee r & \text { P } \\
\text { 3. } q \vee \sim p & P \\
\text { 4. } \sim r & \text { P } \\
\text { 5. } q \vee r & \text { Res (1), (3) } \\
\text { 6. } r & \text { Res (2), (5) } \\
\text { 7. false } \quad \text { Conj. (4), (6) }
\end{array}
\end{aligned}
$$

4. [10] Using the predicates defined on the set P of persons:
$M x \quad x$ is a male,
Fx $\quad x$ is a female,
Exy $\quad x$ equal to y
Txy $\quad x$ is strictly taller than y.

Express in the syntax of Predicate Calculus:
a. The tallest person is a male.

$$
(\forall x)(M x \wedge(\forall y)(\sim E x y \Rightarrow T x y)
$$

b. Some male persons is strictly taller than all female persons but some female person is taller than some male person.

$$
(\exists x)(M x \wedge(\forall y)(F y \Rightarrow T x y)) \wedge(\exists y)(F y \wedge(\exists x)(M x \wedge T y x))
$$

5. [25] Prove that $(\forall x) P x \wedge(\forall x) Q x$ follows from $(\forall x)(P x \wedge Q x)$ (Rather than using the TC rule be specific about the sentential calculus rule.)
$\left\{P_{1}\right\} \quad$ (1). $(\forall x)(P x \wedge Q x)$
$\left\{P_{1}\right\} \quad$ (2). $P a \wedge Q a$
$\left\{P_{1}\right\}$ (3). $P a$
$\left\{P_{1}\right\} \quad$ (4). $(\forall x) P x$
$\left\{P_{1}\right\} \quad$ (5). $Q a$
$\left\{P_{1}\right\} \quad$ (6). $(\forall x) Q x$
$\left\{P_{1}\right\} \quad$ (7). $(\forall x) P x \wedge(\forall x) Q x$

Simp (2)
EG (3)
Simp (2)
EG (3)
Conj (6)

6a. [5] Using induction, prove that for $n \geq 0,1 \leq 3^{n}$.

For $n \geq 0$, let $P(n)=" 1 \leq 3^{n}$ ".
Basis step: $P(0)$ is true since $1 \leq 1=3^{0}$. .

Inductive step: For $n \geq 0, P(n) \Rightarrow P(n+1)$, since if $1 \leq 3^{n}$, then

$$
\begin{aligned}
1 & \leq 3 \\
& \leq 3 \cdot 3^{n} \\
& \leq 3^{n+1} .
\end{aligned}
$$

b. [5] Using induction and part a, prove that for $n \geq 2,1+2 n<3^{n}$.

For $n \geq 2$, let $P(n)=" 1+2 n<3^{n}$ ".
Basis step: $P(2)$ is true since $1+2 \cdot 2=5<9=3^{2}$..

Inductive step: For $n \geq 0, P(n) \Rightarrow P(n+1)$, since if $1+2 n<3^{n}$, then

$$
\begin{aligned}
1+2(n+1) & =1+2 n+2 \\
& <3^{n}+2 \\
& <3^{n}+2 \cdot 1 \\
& <3^{n}+2 \cdot 3^{n} \\
& <3^{n+1} .
\end{aligned}
$$

7. [10] Consider the sequence: $a_{0}=2, a_{1}=1, a_{n}=a_{n-1}+2 a_{n-2}$, for $n \geq 2$. Using induction, prove that for $n \geq 0, a_{n}=2^{n}+(-1)^{n}$.

For $n \geq 0$, let $P(n)=" a_{n}=2^{n}+(-1)^{n}$ ".
Basis step: $P(0)$ and $P(1)$ are true since $a_{0}=2=1+1=2^{0}+(-1)^{0}$ and

$$
a_{1}=1=2-1=2^{1}+(-1)^{1} .
$$

Inductive step: For $n \geq 2, P(n) \Rightarrow P(n+1)$, since if $a_{n-2}=2^{n-2}+(-1)^{n-2}$ and

$$
a_{n-1}=2^{n-1}+(-1)^{n-1} \text {, then }
$$

$$
\begin{aligned}
a_{n} & =a_{n-1}+2 a_{n-2} \\
& =2^{n-1}+(-1)^{n-1}+2\left(2^{n-2}+(-1)^{n-2}\right) \\
& =2^{n-1}-(-1)^{n}+2^{n-1}+2(-1)^{n} \\
& =2 \cdot 2^{n-1}+(-1)^{n} \\
& =2^{n}+(-1)^{n} .
\end{aligned}
$$

8. [10] Prove for any sets A, B, C, and D that $(A \cap B) \sim(C \cup D) \subseteq(A \sim C) \cap(A \sim D)$.

We have

$$
\begin{aligned}
& x \in(A \cap B) \sim(C \cup D) \\
& \Rightarrow(x \in A \cap B) \wedge \sim(x \in C \cup D) \\
& \Rightarrow(x \in A \vee x \in B) \wedge \sim(x \in C \vee x \in D) \\
& \Rightarrow x \in A \wedge(x \notin C \wedge x \notin D) \\
& \Rightarrow(x \in A \wedge x \notin C) \wedge(x \in A \wedge x \notin D) \\
& \Rightarrow x \in(A \sim C) \cap(A \sim D) .
\end{aligned}
$$

9. [10]. Given sets A, B, and C be sets. Prove that $(A \times B) \cup(C \times D) \subseteq(A \cup C) \times(B \cup D)$.

$$
\begin{aligned}
& (x, y) \in(A \times B) \cup(C \times D) \\
& \Rightarrow(x \in A \wedge y \in B) \vee(x \in C \wedge y \in D) \\
& \Rightarrow((x \in A \wedge y \in B) \vee x \in C) \wedge((x \in A \wedge y \in B) \vee y \in D) \\
& \Rightarrow((x \in A \vee x \in C) \wedge(y \in B \vee x \in C)) \wedge((x \in A \vee y \in D) \wedge(y \in B \vee y \in D)) \\
& \Rightarrow(x \in A \vee x \in C) \wedge(y \in B \vee y \in D)) \\
& \Rightarrow(x, y) \in(A \cup C) \times(B \cup D) .
\end{aligned}
$$

10. Let R be a relation on a non-empty set A. Define $R^{1}=R$ and $R^{n+1}=R \circ R^{n}$ for $n \geq 1$.
a. [5]. Prove (from the definition) that if R is transitive $R^{2} \subseteq R$.

Take $(x, y) \in R^{2}$. By definition of R^{2}, there exists a $z \in A$ so that $(x, z) \in R$ and $(z, y) \in R$. But by transitivity, $(x, y) \in R$ so $R^{2} \subseteq R$.
b. [10]. Prove that if R is transitive $R^{n} \subseteq R$ for all $n \geq 1$. (You may assume that if $S_{1} \subseteq S_{2}$ and $T_{1} \subseteq T_{2}$ then $\left.S_{1} \circ T_{1} \subseteq S_{2} \circ T_{2}.\right)$

We proceed by induction. For $n=1, R^{1}=R \subseteq R$. Now assume for some $n \geq 1$, that if R is transitive then $R^{n} \subseteq R$. But then $R^{n+1}=R \circ R^{n} \subseteq R \circ R=R^{2} \subseteq R$.
11. [10] Let E be a relation on \square^{2} (the Cartesian plane) defined by $((x, y),(u, v)) \in E$ if and only if $|x|+|y|=|u|+|v|$. Prove that E is an equivalence relation.

We must prove that E is reflexive, symmetric, and transitive. Since for all $(x, y) \in \square^{2}$, $|x|+|y|=|x|+|y|$, we have $((x, y),(x, y)) \in E$ so E is reflexive. Next, since if $((x, y),(u, v)) \in E$ then $|x|+|y|=|u|+|v|$ and $|u|+|v|=|x|+|y|$ so $((u, v),(x, y)) \in E$ and E is symmetric. Finally, if $((x, y),(u, v)) \in E$ and $((u, v),(w, z)) \in E$ then $|x|+|y|=|u|+|v|$ and $|u|+|v|=|w|+|z|$ so $|x|+|y|=|w|+|z|$ and $((x, y),(w, z)) \in E$, so E is transitive. Since E is reflexive, symmetric, and transitive it is an equivalence relation.
12. [10] Given $f: \square \rightarrow \square$ and $g: \square \rightarrow \square$ defined by $f(x)=e^{x}$ and $g(x)=\sin (x)$, respectively, what are
a. $f \circ f$

$$
f \circ f(x)=f(f(x))=e^{\left(e^{x}\right)} .
$$

b. $f \circ g$

$$
f \circ g(x)=f(g(x))=e^{\sin (x)} .
$$

c. $g \circ f$

$$
g \circ f(x)=g(f(x))=\sin \left(e^{x}\right) .
$$

d. $g \circ g$

$$
g \circ g(x)=g(g(x))=(\sin (\sin (x)) .
$$

13. Given a non-empty set A and function $f: A \rightarrow A$, define $f^{1}=f$ and $f^{n+1}=f \circ f^{n}$ for $n \geq 1$.
a. [10] Prove that if f is one-to-one then f^{n} is one-to-one for $n \geq 1$.

We prove this by induction. For $n=1$, we have $f^{1}=f$, so if f is one-to-one then f^{1} is one-to-one. Now suppose if f is one-to-one then f^{n} is one-to-one and consider $f^{n+1}=f \circ f^{n}$. Given $x, y \in A$, suppose $f^{n+1}(x)=f^{n+1}(y)$. Then $f \circ f^{n}(x)=f\left(f^{n}(x)\right)=f\left(f^{n}(y)\right)=f \circ f^{n}(y)$. But since f is one-to-one, we have $f^{n}(x)=f^{n}(y)$ and then since f^{n} is one-to-one, we have $x=y$. We conclude f^{n+1} is one-to-one and so, by induction, if f is one-to-one then f^{n} is one-to-one for $n \geq 1$.
b. [10] Prove that if f is onto then f^{n} is onto for $n \geq 1$.

We prove this by induction. For $n=1$, we have $f^{1}=f$, so if f is onto then f^{1} is onto. Now suppose if f is onto then f^{n} is onto and consider $f^{n+1}=f \circ f^{n}$. Since f is onto, given $y \in A$ there exists $x \in A$ such that $f(x)=y$ and since f^{n} is onto there exists a $z \in A$ so that $f^{n}(z)=x$. But this means there exists a $z \in A$ such that $f^{n+1}(z)=f\left(f^{n}(z)\right)=f(x)=y$. We conclude f^{n+1} is ono and so, by induction, if f is onto then f^{n} is onto for $n \geq 1$.

