Final Examination Solutions

CS 313H

1a. [5] Use a truth table to determine for which truth values of p,q, and r $(p \lor \sim r) \Rightarrow (\sim q \land p)$ is true.

р	q	r	~ r	$\sim q$	$p \lor \sim r$	$\sim q \wedge p$	$(p \lor \sim r) \Longrightarrow (\sim q \land p)$
F	F	F	Т	Т	Т	F	F
F	F	Т	F	Т	F	F	Т
F	Т	F	Т	F	Т	F	F
F	Т	Т	F	F	F	F	Т
Т	F	F	Т	Т	Т	Т	Т
Т	F	Т	F	Т	Т	Т	Т
Т	Т	F	Т	F	Т	F	F
Т	Т	Т	F	F	Т	F	F

1a. [5] Use the information to construct a logical expression exp(p,q,r) so that you have

$$exp(p,q,r) = (\sim p \land r) \lor (p \land \sim q)$$

2. [20] Using sentential calculus (with a four column format), prove that the conclusion $\sim p \wedge \sim q$ follows from premises: $(p \Rightarrow r) \wedge (q \Rightarrow s), (s \wedge r) \Rightarrow t, \sim t$ and $\sim (\sim p \vee \sim q)$.

$\{Pr_1\}$	(1.) $(p \Rightarrow r) \land (q \Rightarrow s)$	Р
$\{Pr_2\}$	(2.) $(s \wedge r) \Longrightarrow t$	Р
$\{Pr_3\}$	(3.) ~ t	Р
$\{Pr_4\}$	$(4.) \sim (\sim p \lor \sim q)$	Р
$\{Pr_4\}$	(5.) ~~ $p \land \sim q$	DeM (4)
$\{Pr_4\}$	(6.) $p \wedge q$	DN (5)
$\{Pr_4\}$	(7.) <i>p</i>	Simp (6)
$\{Pr_1\}$	(8.) $p \Longrightarrow r$	Simp (1)
$\{Pr_1, Pr_4\}$	(9.) <i>r</i>	MP (7), (8)
$\{Pr_4\}$	(10.) <i>q</i>	Simp (6)
$\{Pr_1\}$	(11.) $q \Longrightarrow s$	Simp (1)
$\{Pr_1, Pr_4\}$	(12.) <i>s</i>	MP (10), (11)
$\{Pr_1, Pr_4\}$	(13.) $s \wedge r$	Add (9), (12)
$\{Pr_1, Pr_2, Pr_4\}$	(14.) <i>t</i>	MP (13), (2)
$\{Pr_1, Pr_2, Pr_3, Pr_4\}$	$(15.) t \wedge \sim t$	Add (14), (3)
$\{Pr_1, Pr_2, Pr_3, Pr_4\}$	(16.) ~ $p \wedge \sim q$	Clav (15)

3. [15] Prove that the conclusion $\sim q \wedge p$ follows from the premises $(p \Rightarrow q) \Rightarrow r$ and $\sim r$. First convert the premise and the negation of the conclusion into Conjunctive Normal Form, and then employ a resolution proof to get a contradiction.

$$(p \Rightarrow q) \Rightarrow r$$

$$\sim (p \Rightarrow q) \lor r$$

$$\sim (\sim p \lor q) \lor r$$

$$(\sim \rho \land q) \lor r$$

$$(p \land \sim q) \lor r$$

$$(p \land \sim q) \lor r$$

$$(p \lor r) \land (\sim q \lor r)$$

$$\sim (\sim q \land p)$$

$$\sim q \lor \sim p$$

$$q \lor \sim p$$
1. $p \lor r$ P
2. $\sim q \lor r$ P
3. $q \lor \sim p$ P
4. $\sim r$ P
5. $q \lor r$ Res (1), (3)
6. r Res (2), (5)
7. false Conj. (4), (6)

4. [10] Using the predicates defined on the set P of persons:

- Txy x is strictly taller than y.

Express in the syntax of Predicate Calculus:

a. The tallest person is a male.

 $(\forall x)(Mx \land (\forall y)(\sim Exy \Longrightarrow Txy))$

b. Some male persons is strictly taller than all female persons but some female person is taller than some male person.

 $(\exists x)(Mx \land (\forall y)(Fy \Longrightarrow Txy))\land (\exists y)(Fy \land (\exists x)(Mx \land Tyx))$

5. [25] Prove that $(\forall x)Px \land (\forall x)Qx$ follows from $(\forall x)(Px \land Qx)$ (Rather than using the TC rule be specific about the sentential calculus rule.)

$\{P_1\}$	(1). $(\forall x)(Px \land Qx)$	Р
$\{P_1\}$	(2). $Pa \wedge Qa$	UI (1)
$\{P_1\}$	(3). <i>Pa</i>	Simp (2)
$\{P_1\}$	(4). $(\forall x) Px$	EG (3)
$\{P_1\}$	(5). <i>Qa</i>	Simp (2)
$\{P_1\}$	(6). $(\forall x)Qx$	EG (3)
$\{P_1\}$	(7). $(\forall x) Px \land (\forall x) Qx$	Conj (6)

6a. [5] Using induction, prove that for $n \ge 0, 1 \le 3^n$.

For $n \ge 0$, let $P(n) = "1 \le 3^n$ ". Basis step: P(0) is true since $1 \le 1 = 3^0$. Inductive step: For $n \ge 0$, $P(n) \Longrightarrow P(n+1)$, since if $1 \le 3^n$, then $1 \le 3$ $\le 3 \cdot 3^n$ $\le 3^{n+1}$.

b. [5] Using induction and part **a**, prove that for $n \ge 2$, $1+2n < 3^n$.

For $n \ge 2$, let $P(n) = "1 + 2n < 3^n$ ". Basis step: P(2) is true since $1 + 2 \cdot 2 = 5 < 9 = 3^2$.. Inductive step: For $n \ge 0$, $P(n) \Longrightarrow P(n+1)$, since if $1+2n < 3^n$, then 1+2(n+1) = 1+2n+2 $< 3^n + 2 \cdot 1$ $< 3^n + 2 \cdot 3^n$ $< 3^{n+1}$.

7. [10] Consider the sequence: $a_0 = 2, a_1 = 1, a_n = a_{n-1} + 2a_{n-2}$, for $n \ge 2$. Using induction, prove that for $n \ge 0$, $a_n = 2^n + (-1)^n$.

For $n \ge 0$, let $P(n) = a_n = 2^n + (-1)^n$ ". Basis step: P(0) and P(1) are true since $a_0 = 2 = 1 + 1 = 2^0 + (-1)^0$ and $a_1 = 1 = 2 - 1 = 2^1 + (-1)^1$. Inductive step: For $n \ge 2$, $P(n) \Longrightarrow P(n+1)$, since if $a_{n-2} = 2^{n-2} + (-1)^{n-2}$ and $a_{n-1} = 2^{n-1} + (-1)^{n-1}$, then $a_n = a_{n-1} + 2a_{n-2}$ $= 2^{n-1} + (-1)^{n-1} + 2(2^{n-2} + (-1)^{n-2})$ $= 2^{n-1} - (-1)^n + 2^{n-1} + 2(-1)^n$ $= 2 \cdot 2^{n-1} + (-1)^n$

8. [10] Prove for any sets A,B,C, and D that $(A \cap B) \sim (C \cup D) \subseteq (A \sim C) \cap (A \sim D)$.

We have

$$x \in (A \cap B) \sim (C \cup D)$$

$$\Rightarrow (x \in A \cap B) \wedge \sim (x \in C \cup D)$$

$$\Rightarrow (x \in A \lor x \in B) \wedge \sim (x \in C \lor x \in D)$$

$$\Rightarrow x \in A \land (x \notin C \land x \notin D)$$

$$\Rightarrow (x \in A \land x \notin C) \land (x \in A \land x \notin D)$$

$$\Rightarrow x \in (A \sim C) \cap (A \sim D).$$

9. [10]. Given sets A, B, and C be sets. Prove that $(A \times B) \cup (C \times D) \subseteq (A \cup C) \times (B \cup D)$.

$$\begin{aligned} (x, y) &\in (A \times B) \cup (C \times D) \\ \Rightarrow &(x \in A \land y \in B) \lor (x \in C \land y \in D) \\ \Rightarrow &((x \in A \land y \in B) \lor x \in C) \land ((x \in A \land y \in B) \lor y \in D) \\ \Rightarrow &((x \in A \lor x \in C) \land (y \in B \lor x \in C)) \land ((x \in A \lor y \in D) \land (y \in B \lor y \in D)) \\ \Rightarrow &(x \in A \lor x \in C) \land (y \in B \lor y \in D)) \\ \Rightarrow &(x, y) \in (A \cup C) \times (B \cup D). \end{aligned}$$

10. Let R be a relation on a non-empty set A. Define $R^1 = R$ and $R^{n+1} = R \circ R^n$ for $n \ge 1$.

a. [5]. Prove (from the definition) that if R is transitive $R^2 \subseteq R$.

Take $(x, y) \in R^2$. By definition of R^2 , there exists a $z \in A$ so that $(x, z) \in R$ and $(z, y) \in R$. But by transitivity, $(x, y) \in R$ so $R^2 \subseteq R$.

b. [10]. Prove that if R is transitive $R^n \subseteq R$ for all $n \ge 1$. (You may assume that if $S_1 \subseteq S_2$ and $T_1 \subseteq T_2$ then $S_1 \circ T_1 \subseteq S_2 \circ T_2$.)

We proceed by induction. For n = 1, $R^1 = R \subseteq R$. Now assume for some $n \ge 1$, that if R is transitive then $R^n \subseteq R$. But then $R^{n+1} = R \circ R^n \subseteq R \circ R = R^2 \subseteq R$.

11. [10] Let *E* be a relation on \square^2 (the Cartesian plane) defined by $((x, y), (u, v)) \in E$ if and only if |x|+|y|=|u|+|v|. Prove that *E* is an equivalence relation.

We must prove that E is reflexive, symmetric, and transitive. Since for all $(x, y) \in \mathbb{D}^2$, |x|+|y|=|x|+|y|, we have $((x, y), (x, y)) \in E$ so E is reflexive. Next, since if $((x, y), (u, v)) \in E$ then |x|+|y|=|u|+|v| and |u|+|v|=|x|+|y| so $((u, v), (x, y)) \in E$ and E is symmetric. Finally, if $((x, y), (u, v)) \in E$ and $((u, v), (w, z)) \in E$ then |x|+|y|=|u|+|v| and |u|+|v|=|w|+|z| so |x|+|y|=|w|+|z| and $((x, y), (w, z)) \in E$, so E is transitive. Since E is reflexive, symmetric, and transitive it is an equivalence relation.

12. [10] Given $f:\Box \to \Box$ and $g:\Box \to \Box$ defined by $f(x) = e^x$ and $g(x) = \sin(x)$, respectively, what are

a.
$$f \circ f$$

 $f \circ f(x) = f(f(x)) = e^{(e^x)}$.
b. $f \circ g$

$$f \circ g(x) = f(g(x)) = e^{\sin(x)}.$$

c. $g \circ f$
 $g \circ f(x) = g(f(x)) = \sin(e^x).$
d. $g \circ g$
 $g \circ g(x) = g(g(x)) = (\sin(\sin(x))).$

13. Given a non-empty set A and function $f: A \to A$, define $f^1 = f$ and $f^{n+1} = f \circ f^n$ for $n \ge 1$.

a. [10] Prove that if f is one-to-one then f^n is one-to-one for $n \ge 1$.

We prove this by induction. For n = 1, we have $f^1 = f$, so if f is one-to-one then f^1 is one-to-one. Now suppose if f is one-to-one then f^n is one-to-one and consider $f^{n+1} = f \circ f^n$. Given $x, y \in A$, suppose $f^{n+1}(x) = f^{n+1}(y)$. Then $f \circ f^n(x) = f(f^n(x)) = f(f^n(y)) = f \circ f^n(y)$. But since f is one-to-one, we have $f^n(x) = f^n(y)$ and then since f^n is one-to-one, we have x = y. We conclude f^{n+1} is oneto-one and so, by induction, if f is one-to-one then f^n is one-to-one for $n \ge 1$.

b. [10] Prove that if f is onto then f^n is onto for $n \ge 1$.

We prove this by induction. For n = 1, we have $f^1 = f$, so if f is onto then f^1 is onto. Now suppose if f is onto then f^n is onto and consider $f^{n+1} = f \circ f^n$. Since f is onto, given $y \in A$ there exists $x \in A$ such that f(x) = y and since f^n is onto there exists a $z \in A$ so that $f^n(z) = x$. But this means there exists a $z \in A$ such that $f^{n+1}(z) = f(f^n(z)) = f(x) = y$. We conclude f^{n+1} is ono and so, by induction, if f is onto then f^n is onto for $n \ge 1$.