1. [5] Use a truth table to determine for which truth values of p,q, and $r \sim r \wedge (q \Leftrightarrow (p \vee \sim r))$ is true.

p	q	r	~ r	<i>p</i> ∨ ~ <i>r</i>	$q \Leftrightarrow (p \lor \sim r)$	$\sim r \wedge (q \Leftrightarrow (p \vee \sim r))$
F	F	F	T	Т	F	F
F	F	T	F	F	T	F
F	T	F	Т	Т	T	Т
F	T	T	F	F	F	F
T	F	F	T	Т	F	F
T	F	T	F	Т	F	F
T	T	F	T	Т	T	T
T	T	T	F	T	T	F

2. [15] Using the rules of Sentential Calculus conclude $(p \land \sim b) \Rightarrow c$ from the premises $a \lor (b \lor c)$ and $p \Rightarrow \sim a$.

$$\{P_1\} \qquad (1.) \ a \lor (b \lor c) \qquad P$$

$$\{P_2\} \qquad (2.) \ p \Rightarrow \sim a \qquad P$$

$$\{P_3\} \qquad (3.) \ p \land \sim b \qquad P$$

$$\{P_3\} \qquad (4.) \ p \qquad \text{Simp (3)}$$

$$\{P_2, P_3\} \qquad (5.) \sim a \qquad \text{MP (2), (4)}$$

$$\{P_3\} \qquad (6.) \sim b \qquad \text{Simp (3)}$$

$$\{P_2, P_3\} \qquad (7.) \sim a \land \sim b \qquad \text{Conj (5), (6)}$$

$$\{P_2, P_3\} \qquad (8.) \sim (a \lor b) \qquad \text{DeM (7)}$$

$$\{P_1\} \qquad (9.) \ (a \lor b) \lor c \qquad \text{Assoc (1)}$$

$$\{P_1, P_2, P_3\} \qquad (10.) \ c \qquad \text{DS (9)}$$

$$\{P_1, P_2\} \qquad (11.) \ (p \land \sim b) \Rightarrow c \qquad \text{C (3), (10)}$$

3. [15] Prove that the conclusion p follows from

premises: $p \lor q, q \Rightarrow t, \neg r \lor \neg s$, $(s \land t) \Rightarrow r$, and $q \Rightarrow s$. First convert the premises and the negation of the conclusion into Conjunctive Normal Form, and then employ a resolution proof to get a contradiction.

$$p \vee q$$

$$q \Rightarrow t$$

$$\sim q \vee t$$

$$\sim r \lor \sim s$$

$$(s \land t) \Rightarrow r$$

$$\sim (s \land t) \lor r$$

$$\sim s \lor \sim t \lor r$$

$$q \Rightarrow s$$

$$\sim q \lor s$$

~ p

4. [15] Using the predicates defined on the set P of people:

Express in the syntax of Predicate Calculus:

a. If anyone likes Alice it must be either Bill or Clyde.

$$(\forall x)(LxAlice \Rightarrow (ExBill \lor ExClyde))$$

b. Bill is the only one who will go with Clyde but no one will go with Alice.

$$(GBillClyde \land (\forall x)(GxClyde \Rightarrow ExBill)) \land \sim (\exists y)(GyAlice)$$

c. A person goes with another person only if the first one likes the second

$$(\forall x)(\forall y)(Gxy \Rightarrow Lxy)$$

5. [20] Prove that $(\forall x)(Px \land Rx) \land (\exists y)Qy$ follows from $(\forall x)(Px \land (Qx \land Rx))$.

$$\{P_1\}$$
 (1). $(\forall x)(Px \land (Qx \land Rx))$ P

$$\{P_1\}$$
 (2). $Pa \wedge (Qa \wedge Ra)$ UI (1)

$$\{P_1\}$$
 (3). $Pa \wedge (Ra \wedge Qa)$ Comm (2)

$$\{P_1\}$$
 (4). $(Pa \wedge Ra) \wedge Qa$ Assoc (3)

$$\{P_1\}$$
 (5). $Pa \wedge Ra$ Simp (4)

$$\{P_1\}$$
 (6). $(\forall x)(Px \land Rx)$ UG (3)

$$\{P_1\}$$
 (7). Qa Simp (4)

$$\{P_1\}$$
 (8). $(\exists y)Qy$ EG (3)

$$\{P_1\}$$
 (9). $(\forall x)(Px \land Rx) \land (\exists y)Qy$ Conj (6)

6. [10] Using induction, prove that for $n \ge 0$, $3^{2n} + 4^{n+1}$ is an integer multiple of 5. (Hint: 9=5+4.)

For $n \ge 0$, let $P(n) = "3^{2n} + 4^{n+1}$ is an integer multiple of 5".

Basis step: P(0) is true since $3^{2\cdot 0} + 4^{0+1} = 1 + 4 = 5 = 5 \cdot 1$..

Inductive step: For $n \ge 0$, $P(n) \Rightarrow P(n+1)$, since if $3^{2n} + 4^{n+1} = 5k$ for some interger k, then

$$3^{2(n+1)} + 4^{n+1+1} = 9 \cdot 3^{2n} + 4 \cdot 4^{n+1}$$

$$= (5+4) \cdot 3^{2n} + 4 \cdot 4^{n+1}$$

$$= 5 \cdot 3^{2n} + 4(3^{2n} + 4^{n+1})$$

$$= 5 \cdot 3^{2n} + 4 \cdot 5k$$

$$= 5(3^{2n} + 4k)$$

and $3^{2n} + 4k$ is an integer since $n \ge 0$ and k is an integer.

- 7. Prove or give a simple counterexample:
 - **a.** [5] For any sets A, B, and C that $(A \sim B) \cap C = (A \cap C) \sim B$.

We have

$$x \in (A \sim B) \cap C$$

$$\Leftrightarrow (x \in A \sim B) \land (x \in C)$$

$$\Leftrightarrow (x \in A \land) \land (x \in C)$$

$$\Leftrightarrow (x \in A \land x \in C) \land (x \notin B)$$

$$\Leftrightarrow x \in (A \cap C) \sim B.$$

b. [5] For any sets A, B, and C that $A \sim (B \cup C) = (A \sim B) \cup (A \sim C)$.

Let
$$A = B = \{1\}$$
 and $C = \emptyset$, then $A \sim (B \cup C) = \{1\} \sim (\{1\} \cup \emptyset) = \emptyset$ but $(A \sim B) \cup (A \sim C) = (\{1\} \sim \{1\}) \cup (\{1\} \sim \emptyset) = \emptyset \cup \{1\} = \{1\}.$

8. [10]. Given sets A, B, C, and D be sets. Prove that $A \times B \subseteq C \times D$ if and only if $A \subseteq C \land B \subseteq D$.

Suppose
$$A \subseteq C \land B \subseteq D$$
, then $(x, y) \in A \times B$
 $\Rightarrow x \in A \land y \in B$
 $\Rightarrow x \in C \land y \in D$
 $\Rightarrow (x, y) \in C \times D$.
Suppose $A \times B \subseteq C \times D$, then $x \in A \land y \in B$
 $\Rightarrow (x, y) \in A \times B$
 $\Rightarrow (x, y) \in C \times D$
 $\Rightarrow x \in C \land y \in D$,
Thus $A \subseteq C \land B \subseteq D$.

10. [10] Prove that composition of relations is associative. That is if $R \subseteq A \times B$, $S \subseteq B \times C$, and $T \subseteq C \times D$, then $T \circ (S \circ R) = (T \circ S) \circ R$.

For
$$(a,d) \in A \times D$$
, we have $(a,d) \in T \circ (S \circ R)$
 $\Leftrightarrow \exists c \in C \ni (a,c) \in (S \circ R) \land (c,d) \in T$
 $\Leftrightarrow (\exists c \in C \land \exists b \in B) \ni (a,b) \in R \land (b,c) \in S \land (c,d) \in T$
 $\Leftrightarrow \exists b \in B \ni (a,b) \in R \land (b,d) \in T \circ S$
 $\Leftrightarrow (a,d) \in (T \circ S) \circ R$.

11. [10] Let E be a relation on \Box 3 (Cartesian three space) defined by $((x, y, z), (u, v, w)) \in E$ if and only if $x^2 + y^2 + z^2 = u^2 + v^2 + w^2$. Prove that E is an equivalence relation.

We must prove that E is reflexive, symmetric, and transitive. Since for all $(x, y, z) \in \Box^3$, $x^2 + y^2 + z^2 = x^2 + y^2 + z^2$, we have $((x, y, z), (x, y, z)) \in E$ so E is reflexive. Next, since if $((x, y, z), (u, v, w)) \in E$ then $x^2 + y^2 + z^2 = u^2 + v^2 + w^2$ and $u^2 + v^2 + w^2 = x^2 + y^2 + z^2$ so $((u, v, w), (x, y, z)) \in E$ and E is symmetric. Finally, if $((x, y, z), (u, v, w)) \in E$ and $((u, v, w), (p, q, r)) \in E$ then $x^2 + y^2 + z^2 = u^2 + v^2 + w^2$ and $u^2 + v^2 + w^2 = p^2 + q^2 + r^2$ so $x^2 + y^2 + z^2 = p^2 + q^2 + r^2$ and $((x, y, z), (p, q, r)) \in E$, so E is transitive. Since E is reflexive, symmetric, and transitive it is an equivalence relation.

12. [10] Given sets A and B and functions $f:A \to B$, and $g:B \to A$. Prove that f and g are both one-to-one and onto then $g \circ f$ is one-to-one and onto.

Since f is one-to-one if $x \neq y$ then $f(x) \neq f(y)$. But then since g is one-to-one $g \circ f(x)g(f(x)) \neq g(f(y)) = g \circ f(y)$, so $g \circ f$ is one-to-one. Given $x \in A$, since g is onto, there exists a $y \in B$ so that g(y) = x. But then since f is onto, there exists a $z \in A$ so that f(z) = y, but then for that $z \in A$ $g \circ f(x) = g(f(x)) = g(y) = x$, so $g \circ f$ is onto.

13. [10] Consider the parity function on integers: $p: \Box \to \{0,1\}$ where $p(n) = \begin{cases} 0 & n \text{ is even} \\ 1 & n \text{ is odd} \end{cases}$ and extend it to triples of integers by $p_3: \Box \times \Box \times \Box \to \{0,1\} \times \{0,1\} \times \{0,1\} \times \{0,1\}$ where $p_3(m,n,r) = (p(m),p(n),p(r))$. Show that given any nine points in $\Box \times \Box \times \Box$, two must have the same parity.

Let A represent the set of nine triples of integers. Since $\{0,1\} \times \{0,1\} \times \{0,1\}$ has only eight elements, the function p_3 cannot be one-to-one on A. Thus there must exist two triples in the set with the same parity.