
1. Using induction prove for 2,n ≥  that 
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Now assume for some 2,n ≥  that 
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2. Using induction, prove that for 0,n ≥ 1
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For 1,n =  we have 
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 Now assume the result is true for some 0.n ≥  
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then holds for all 0.n ≥  
 



3. Assuming 0λ ≠  and 1λ ≠  and using induction, prove that for ≥ 0,n
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For = 0,n  we have 
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4. Using induction, prove that for 1,n ≥ 3 2+n n  is an integral multiple of 3 
 (i.e. 3(( 1) ( 2 3 ))n n k n n k∀ ∈ ≥ ⇒ ∃ ∈ + =¢ ¢ . 
 

For 1,n =  we have 3 2 3 3 1+ = = ⋅n n .  Now assume the result is true for 1.n ≥  We then 
have some integer k  so that have 3 2 3+ =n n k . But then  
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Since n is an integer, so is 2 1+ + +k n n  so 3( 1) 2( 1)+ + +n n  is an integral multiple of 3. 
The result then holds for all 1.n ≥  

 

5. Using induction, prove that for 1,n ≥
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The result then holds for all 1.n ≥  



6. For fixed real numbers a  and ,b consider the iteratively defined sequence: 
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The result then holds for 1n +  and by induction holds for all 0.n ≥  
 
7. Using induction, prove that for 4,n ≥ ! 2 .> nn  
 

For 4 ,n =  we have 4! 4! 24 16 2 2 .= = > = = nn  Now assume the result is true for some 
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8. For fixed real numbers a  and b , with 1a ≠ , define 

0 0x = , 
and for 1,2,...k =  
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Consider the inductive hypothesis, 1( ) " " .
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so ( 1)P k +  is also true. By induction we have for 0,k ≥
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9.  Consider the Fibonacci sequence: 0 1 1 21, 1, ,k k kf f f f f− −= = = +  for 2.k ≥  Using induction, 
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10. Using induction, prove that for 0,n ≥ 2
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11. Using induction, prove that for any real number a  and for all integers ≥, 1,n m ( )mn m na a= . 
You may assume for any real numbers α  and :β  
 

a. 1α α= , 
b. i j i jα α α +=  , for all integers ≥, 1,i j  
c. ( )i i iα β αβ= , for all integers ≥ 1.i  
 

(Hint: Fix 1.n ≥ ) 
 

Fix 1.n ≥ For ≥ 1,m  let ( )P m = “ ( )mn m na a= ”. 
Basis step: (1)P  is true since 1 1( )n n na a a⋅ = = . 
Inductive step on m : For 1,m ≥  ( ) ( 1)P m P m⇒ + , since if ( )mn m na a=  then 

 

( 1)

1

( )

( )

( ) .

m n mn n mn n

m n n

m n

m n

a a a a

a a

a a

a

+ +

+

= =

=

=

=

 

 
12. Using induction, prove that for 2,n ≥ 32 3+ <n n .   
 

For 2,≥n let ( )P n = “ 32 3+ <n n ”. 
Basis step: (2)P is true since 32 2 3 7 8 2 .⋅ + = < =  
Inductive step: For 2,≥n  ( ) ( 1)P n P n⇒ + , since if 32 3+ <n n , then 3 2n >  and 

23 1 0n + >  so: 

3

3

3 2 3

2( 1) 3 2 3 2

2

3

3 3 1 ( 1) .

+ + = + +

< +

< +

< + + + = +

n n

n

n n

n n n n

 

 
13.  Using induction, prove that for 0,n ≥ 1 3n≤ . 
 

For 0,≥n let ( )P n = “1 3n≤ ”. 
Basis step: (0)P is true since 01 1 3 .≤ = . 
Inductive step: For 0,n ≥  ( ) ( 1)P n P n⇒ + , since if 1 3n≤ , then 
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14. Using induction and Problem 13, prove that for ≥ 2,n 1 2 3nn+ < . 
 

For 2,n ≥ let ( )P n = “1 2 3nn+ < ”. 
Basis step: (2)P is true since 21 2 2 5 9 3 .+ ⋅ = < = . 
Inductive step: For 0,n ≥  ( ) ( 1)P n P n⇒ + , since if 1 2 3nn+ < , then 
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15.  Consider the sequence: − −= = = +0 1 1 22, 1, 2 ,n n na a a a a  for ≥ 2.n  Using induction, prove that 
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