1. Using induction prove for $n \ge 2$, that $\prod_{k=2}^{n} (1 - \frac{1}{k^2}) = \frac{n+1}{2n}$.

For n = 2, we have

$$\prod_{k=2}^{n} (1 - \frac{1}{k^2}) = \prod_{k=2}^{2} (1 - \frac{1}{k^2})$$
$$= 1 - \frac{1}{4}$$
$$= \frac{3}{4}$$
$$= \frac{2 + 1}{2 \cdot 2}$$
$$= \frac{n + 1}{2n}.$$

Now assume for some $n \ge 2$, that $\prod_{k=2}^{n} (1 - \frac{1}{k^2}) = \frac{n+1}{2n}$. We then have $\prod_{k=2}^{n+1} (1 - \frac{1}{k^2}) = \prod_{k=2}^{n} (1 - \frac{1}{k^2})(1 - \frac{1}{(n+1)^2})$ $= \frac{n+1}{2n}(1 - \frac{1}{(n+1)^2})$ $= \frac{n+1}{2n}\frac{(n+1)^2 - 1}{(n+1)^2}$ $= \frac{n+1}{2n}\frac{n(n+2)}{(n+1)^2}$ $= \frac{n+2}{2(n+1)}$ $= \frac{(n+1)+1}{2(n+1)}.$

2. Using induction, prove that for $n \ge 0$, $\sum_{k=0}^{n} 2^k = 2^{n+1} - 1$

For n = 1, we have $\sum_{k=0}^{n} 2^k = 2^0 = 1 = 2^{0+1} - 1$. Now assume the result is true for some $n \ge 0$. We then have $\sum_{k=0}^{n+1} 2^k = \sum_{k=0}^{n} 2^k + 2^{n+1} = (2^{n+1} - 1) + 2^{n+1} = 2 \cdot 2^{n+1} - 1 = 2^{(n+1)+1} - 1$. The result then holds for all $n \ge 0$. **3.** Assuming $I \neq 0$ and $I \neq 1$ and using induction, prove that for $n \ge 0$, $\sum_{k=0}^{n} I^{k} = \frac{I^{n+1}-1}{I-1}$.

For
$$n = 0$$
, we have $\sum_{k=0}^{0} I^{k} = I^{0} = 1 = \frac{I^{n+1} - 1}{I - 1}$. Now assume the result is true for $n \ge 0$. We then have $\sum_{k=0}^{n+1} I^{k} = \sum_{k=0}^{n} I^{k} + I^{n+1} = \frac{I^{n+1} - 1}{I - 1} + I^{n+1} = \frac{I^{n+1} - 1 + I^{n+2} - I^{n+1}}{I - 1} = \frac{I^{n+2} - 1}{I - 1}$. The result then holds for all $n \ge 0$.

4. Using induction, prove that for $n \ge 1$, $n^3 + 2n$ is an integral multiple of 3 (i.e. $\forall n \in \mathbb{Z} ((n \ge 1) \Rightarrow \exists k \in \mathbb{Z} (n^3 + 2n = 3k))$.

For n = 1, we have $n^3 + 2n = 3 = 3 \cdot 1$. Now assume the result is true for $n \ge 1$. We then have some integer k so that have $n^3 + 2n = 3k$. But then $(n+1)^3 + 2(n+1) = n^3 + 3n^2 + 3n + 1 + 2n + 2$ $= n^3 + 2n + 3(n^2 + n + 1)$ $= 3k + 3(n^2 + n + 1)$ $= 3 \cdot (k + n^2 + n + 1).$

Since *n* is an integer, so is $k + n^2 + n + 1$ so $(n+1)^3 + 2(n+1)$ is an integral multiple of 3. The result then holds for all $n \ge 1$.

5. Using induction, prove that for $n \ge 1$, $\sum_{k=1}^{n} (4k-3) = n(2n-1)$.

For n = 1, we have $\sum_{k=1}^{n} (4k - 3) = 4 - 3 = 1 = 1(2 \cdot 1 - 1) = n(2n - 1)$. Now assume the result is true for $n \ge 1$. We then have $\sum_{k=1}^{n+1} (4k - 3) = \sum_{k=1}^{n} (4k - 3) + (4(n + 1) - 3)$ = n(2n - 1) + 4n + 4 - 3 $= 2n^2 - n + 4n + 1$ $= 2(n + 1)^2 - (n + 1)$ = (n + 1)(2(n + 1) - 1).

The result then holds for all $n \ge 1$.

6. For fixed real numbers *a* and *b*, consider the iteratively defined sequence:

$$s_0 = a$$

$$s_n = 2s_{n-1} + b, \text{ for } n \ge 1.$$

Using induction, prove that for $n \ge 0$, $s_n = 2^n a + (2^n - 1)b$.

For n = 0, we have $s_0 = a = 1 \cdot a + (1-1)b = 2^0 a + (2^0 - 1)b$. Now assume the result is true for some $n \ge 0$. We then have

$$s_{n+1} = 2s_n + b$$

= 2(2ⁿ a + (2ⁿ - 1)b) + b
= 2ⁿ⁺¹ a + (2ⁿ⁺¹ - 2 + 1)b
= 2ⁿ⁺¹ a + (2ⁿ⁺¹ - 1)b.

The result then holds for n+1 and by induction holds for all $n \ge 0$.

7. Using induction, prove that for $n \ge 4$, $n! > 2^n$.

For n = 4, we have $n! = 4! = 24 > 16 = 2^4 = 2^n$. Now assume the result is true for some $n \ge 4$. We then have $n+1 \ge 5 > 2$ so $(n+1)! = (n+1) \cdot n! > (n+1) \cdot 2^n > 2 \cdot 2^n = 2^{n+1}$. The result then holds for n+1 and by induction holds for all $n \ge 4$.

8. For fixed real numbers *a* and *b*, with $a \neq 1$, define

 $X_0 = 0$,

and for k = 1, 2, ...

$$x_k = a x_{k-1} + b.$$

Using induction, prove that for $k \ge 0$, $x_k = \frac{a^k - 1}{a - 1}b$.

Consider the inductive hypothesis, $P(k) = "x_k = \frac{a^k - 1}{a - 1}b"$. For k = 0, we have

$$x_{0} = 0 = \frac{a^{0} - 1}{a - 1}b$$
. So $P(0)$ is true. Now for some $k \ge 1$, assume $P(k)$. We then have

$$x_{k+1} = ax_{k} + b$$

$$= a\frac{a^{k} - 1}{a - 1}b + b$$

$$= \frac{a^{k+1} - a + a - 1}{a - 1}b$$

$$= \frac{a^{k+1} - 1}{a - 1}b,$$

so P(k+1) is also true. By induction we have for $k \ge 0$, $x_k = \frac{a^k - 1}{a - 1}b$.

9. Consider the Fibonacci sequence: $f_0 = 1$, $f_1 = 1$, $f_k = f_{k-1} + f_{k-2}$, for $k \ge 2$. Using induction, prove that for $n \ge 0$, $\sum_{k=0}^{n} f_k^2 = f_n f_{n+1}$.

For $n \ge 0$, let $P(n) = \sum_{k=0}^{n} f_{k}^{2} = f_{n} f_{n+1}^{n}$. Basis step: P(0) is true since $\sum_{k=0}^{n} f_{k}^{2} = f_{0}^{2} = 1 = 1 \cdot 1 = f_{0} f_{1}$. Inductive step: For $n \ge 0$, $P(n) \Rightarrow P(n+1)$, since if $\sum_{k=0}^{n} f_{k}^{2} = f_{n} f_{n+1}$, then $\sum_{k=0}^{n+1} f_{k}^{2} = \sum_{k=0}^{n} f_{k}^{2} + f_{n+1}^{2}$

$$= f_n f_{n+1} + f_{n+1}^2$$

= $f_{n+1} (f_n + f_{n+1})$
= $f_{n+1} f_{(n+1)+1}$.

10. Using induction, prove that for $n \ge 0$, $\sum_{k=0}^{n} (2k+1) = (n+1)^{2}$.

For
$$n \ge 0$$
, let $P(n) = \sum_{k=0}^{n} (2k+1) = (n+1)^{2}$.
Basis step: $P(0)$ is true since $\sum_{k=0}^{0} (2k+1) = (2 \cdot 0 + 1) = 1 = (0+1)^{2}$.
Inductive step: For $n \ge 0$, $P(n) \Rightarrow P(n+1)$, since if $\sum_{k=0}^{n} (2k+1) = (n+1)^{2}$, then
 $\sum_{k=0}^{n+1} (2k+1) = \sum_{k=0}^{n} (2k+1) + 2(n+1) + 1$
 $= (n+1)^{2} + 2(n+1) + 1$
 $= ((n+1)+1)^{2}$.

11. Using induction, prove that for any real number *a* and for all integers $n, m \ge 1$, $a^{mn} = (a^m)^n$. You may assume for any real numbers **a** and **b**:

a. $\mathbf{a}^{1} = \mathbf{a}$, b. $\mathbf{a}^{i} \mathbf{a}^{j} = \mathbf{a}^{i+j}$, for all integers $i, j \ge 1$, c. $\mathbf{a}^{i} \mathbf{b}^{i} = (\mathbf{a}\mathbf{b})^{i}$, for all integers $i \ge 1$.

(Hint: Fix $n \ge 1$.)

Fix $n \ge 1$. For $m \ge 1$, let $P(m) = a^{mn} = (a^m)^n$. Basis step: P(1) is true since $a^{1\cdot n} = a^n = (a^1)^n$. Inductive step on m: For $m \ge 1$, $P(m) \Rightarrow P(m+1)$, since if $a^{mn} = (a^m)^n$ then $a^{(m+1)n} = a^{mn+n} = a^{nm}a^n$ $= (a^m)^n a^n$ $= (a^ma)^n$ $= (a^{m+1})^n$.

12. Using induction, prove that for $n \ge 2$, $2n + 3 < n^3$.

For $n \ge 2$, let $P(n) = "2n+3 < n^3$ ". Basis step: P(2) is true since $2 \cdot 2 + 3 = 7 < 8 = 2^3$. Inductive step: For $n \ge 2$, $P(n) \Rightarrow P(n+1)$, since if $2n+3 < n^3$, then 3n > 2 and $3n^2 + 1 > 0$ so: 2(n+1)+3 = 2n+3+2 $< n^3 + 2$ $< n^3 + 3n$ $< n^3 + 3n^2 + 3n + 1 = (n+1)^3$.

13. Using induction, prove that for $n \ge 0$, $1 \le 3^n$.

For $n \ge 0$, let $P(n) = "1 \le 3^n$ ". Basis step: P(0) is true since $1 \le 1 = 3^0$. Inductive step: For $n \ge 0$, $P(n) \Rightarrow P(n+1)$, since if $1 \le 3^n$, then $1 \le 3$ $\le 3 \cdot 3^n$ $\le 3^{n+1}$.

14. Using induction and Problem 13, prove that for $n \ge 2$, $1 + 2n < 3^n$.

For $n \ge 2$, let $P(n) = "1 + 2n < 3^n$ ". Basis step: P(2) is true since $1 + 2 \cdot 2 = 5 < 9 = 3^2$. Inductive step: For $n \ge 0$, $P(n) \Rightarrow P(n+1)$, since if $1 + 2n < 3^n$, then 1 + 2(n+1) = 1 + 2n + 2 $< 3^n + 2$ $< 3^n + 2 \cdot 1$ $< 3^n + 2 \cdot 3^n$ $< 3^{n+1}$.

15. Consider the sequence: $a_0 = 2, a_1 = 1, a_n = a_{n-1} + 2a_{n-2}$, for $n \ge 2$. Using induction, prove that for $n \ge 0$, $a_n = 2^n + (-1)^n$.

For
$$n \ge 0$$
, let $P(n) = a_n = 2^n + (-1)^n$ ".
Basis step: $P(0)$ and $P(1)$ are true since $a_0 = 2 = 1 + 1 = 2^0 + (-1)^0$ and
 $a_1 = 1 = 2 - 1 = 2^1 + (-1)^1$.
Inductive step: For $n \ge 2$, $P(n) \Rightarrow P(n+1)$, since if $a_{n-2} = 2^{n-2} + (-1)^{n-2}$ and
 $a_{n-1} = 2^{n-1} + (-1)^{n-1}$, then
 $a_n = a_{n-1} + 2a_{n-2}$
 $= 2^{n-1} + (-1)^{n-1} + 2(2^{n-2} + (-1)^{n-2})$
 $= 2^{n-1} - (-1)^n + 2^{n-1} + 2(-1)^n$
 $= 2 \cdot 2^{n-1} + (-1)^n$