1. Using induction prove for $\mathrm{n} \geq 2$, that $\prod_{\mathrm{k}=2}^{\mathrm{n}}\left(1-\frac{1}{\mathrm{k}^{2}}\right)=\frac{\mathrm{n}+1}{2 \mathrm{n}}$.

For $n=2$, we have

$$
\begin{aligned}
\prod_{\mathrm{k}=2}^{\mathrm{n}}\left(1-\frac{1}{\mathrm{k}^{2}}\right) & =\prod_{\mathrm{k}=2}^{2}\left(1-\frac{1}{\mathrm{k}^{2}}\right) \\
& =1-\frac{1}{4} \\
& =\frac{3}{4} \\
& =\frac{2+1}{2 \cdot 2} \\
& =\frac{\mathrm{n}+1}{2 \mathrm{n}}
\end{aligned}
$$

Now assume for some $\mathrm{n} \geq 2$, that $\prod_{\mathrm{k}=2}^{\mathrm{n}}\left(1-\frac{1}{\mathrm{k}^{2}}\right)=\frac{\mathrm{n}+1}{2 \mathrm{n}}$. We then have

$$
\begin{aligned}
\prod_{k=2}^{n+1}\left(1-\frac{1}{k^{2}}\right) & =\prod_{k=2}^{n}\left(1-\frac{1}{k^{2}}\right)\left(1-\frac{1}{(n+1)^{2}}\right) \\
& =\frac{n+1}{2 n}\left(1-\frac{1}{(n+1)^{2}}\right) \\
& =\frac{n+1}{2 n} \frac{(n+1)^{2}-1}{(n+1)^{2}} \\
& =\frac{n+1}{2 n} \frac{n(n+2)}{(n+1)^{2}} \\
& =\frac{n+2}{2(n+1)} \\
& =\frac{(n+1)+1}{2(n+1)}
\end{aligned}
$$

2. Using induction, prove that for $\mathrm{n} \geq 0, \sum_{k=0}^{n} 2^{k}=2^{n+1}-1$

For $\mathrm{n}=1$, we have $\sum_{k=0}^{0} 2^{k}=2^{0}=1=2^{0+1}-1$. Now assume the result is true for some $\mathrm{n} \geq 0$.
We then have $\sum_{k=0}^{n+1} 2^{k}=\sum_{k=0}^{n} 2^{k}+2^{n+1}=\left(2^{n+1}-1\right)+2^{n+1}=2 \cdot 2^{n+1}-1=2^{(n+1)+1}-1$. The result then holds for all $n \geq 0$.
3. Assuming $\lambda \neq 0$ and $\lambda \neq 1$ and using induction, prove that for $\mathrm{n} \geq 0, \sum_{k=0}^{n} \lambda^{k}=\frac{\lambda^{n+1}-1}{\lambda-1}$.

For $\mathrm{n}=0$, we have $\sum_{k=0}^{0} \lambda^{k}=\lambda^{0}=1=\frac{\lambda^{0+1}-1}{\lambda-1}$. Now assume the result is true for $\mathrm{n} \geq 0$. We
then have $\sum_{k=0}^{n+1} \lambda^{k}=\sum_{k=0}^{n} \lambda^{k}+\lambda^{n+1}=\frac{\lambda^{n+1}-1}{\lambda-1}+\lambda^{n+1}=\frac{\lambda^{n+1}-1+\lambda^{n+2}-\lambda^{n+1}}{\lambda-1}=\frac{\lambda^{n+2}-1}{\lambda-1}$. The result then holds for all $n \geq 0$.
4. Using induction, prove that for $n \geq 1, n^{3}+2 n$ is an integral multiple of 3 (i.e. $\forall n \in \mathbb{Z}\left((n \geq 1) \Rightarrow \exists k \in \mathbb{Z}\left(n^{3}+2 n=3 k\right)\right.$).

For $\mathrm{n}=1$, we have $n^{3}+2 n=3=3 \cdot 1$. Now assume the result is true for $\mathrm{n} \geq 1$. We then have some integer k so that have $n^{3}+2 n=3 k$. But then

$$
\begin{aligned}
(n+1)^{3}+2(n+1) & =n^{3}+3 n^{2}+3 n+1+2 n+2 \\
& =n^{3}+2 n+3\left(n^{2}+n+1\right) \\
& =3 k+3\left(n^{2}+n+1\right) \\
& =3 \cdot\left(k+n^{2}+n+1\right) .
\end{aligned}
$$

Since n is an integer, so is $k+n^{2}+n+1$ so $(n+1)^{3}+2(n+1)$ is an integral multiple of 3 .
The result then holds for all $\mathrm{n} \geq 1$.
5. Using induction, prove that for $\mathrm{n} \geq 1, \sum_{k=1}^{n}(4 k-3)=n(2 n-1)$.

For $\mathrm{n}=1$, we have $\sum_{k=1}^{n}(4 k-3)=4-3=1=1(2 \cdot 1-1)=n(2 n-1)$. Now assume the result is true for $n \geq 1$. We then have

$$
\begin{aligned}
\sum_{k=1}^{n+1}(4 k-3) & =\sum_{k=1}^{n}(4 k-3)+(4(n+1)-3) \\
& =n(2 n-1)+4 n+4-3 \\
& =2 n^{2}-n+4 n+1 \\
& =2(n+1)^{2}-(n+1) \\
& =(n+1)(2(n+1)-1) .
\end{aligned}
$$

The result then holds for all $\mathrm{n} \geq 1$.
6. For fixed real numbers a and b, consider the iteratively defined sequence:

$$
\begin{aligned}
& s_{0}=a \\
& s_{n}=2 s_{n-1}+b, \text { for } \geq 1 .
\end{aligned}
$$

Using induction, prove that for $n \geq 0, s_{n}=2^{n} a+\left(2^{n}-1\right) b$.

For $\mathrm{n}=0$, we have $s_{0}=a=1 \cdot a+(1-1) b=2^{0} a+\left(2^{0}-1\right) b$. Now assume the result is true for some $\mathrm{n} \geq 0$. We then have

$$
\begin{aligned}
s_{n+1} & =2 s_{n}+b \\
& =2\left(2^{n} a+\left(2^{n}-1\right) b\right)+b \\
& =2^{n+1} a+\left(2^{n+1}-2+1\right) b \\
& =2^{n+1} a+\left(2^{n+1}-1\right) b .
\end{aligned}
$$

The result then holds for $n+1$ and by induction holds for all $n \geq 0$.
7. Using induction, prove that for $n \geq 4, n!>2^{n}$.

For $n=4$, we have $n!=4!=24>16=2^{4}=2^{n}$. Now assume the result is true for some $\mathrm{n} \geq 4$. We then have $\mathrm{n}+1 \geq 5>2$ so

$$
(n+1)!=(n+1) \cdot n!>(n+1) \cdot 2^{n}>2 \cdot 2^{n}=2^{n+1}
$$

The result then holds for $n+1$ and by induction holds for all $n \geq 4$.
8. For fixed real numbers a and b, with $a \neq 1$, define
$\mathrm{x}_{0}=0$,
and for $\mathrm{k}=1,2, \ldots$
$\mathrm{X}_{\mathrm{k}}=\mathrm{a} \mathrm{X}_{\mathrm{k}-1}+\mathrm{b}$.
Using induction, prove that for $\mathrm{k} \geq 0, x_{k}=\frac{a^{k}-1}{a-1} b$.
Consider the inductive hypothesis, $P(k)=" x_{k}=\frac{a^{k}-1}{a-1} b "$. For $k=0$, we have
$x_{0}=0=\frac{a^{0}-1}{a-1} b$. So $\mathrm{P}(0)$ is true. Now for some $\mathrm{k} \geq 1$, assume $\mathrm{P}(\mathrm{k})$. We then have
$\mathrm{x}_{\mathrm{k}+1}=\mathrm{a} \mathrm{X}_{\mathrm{k}}+\mathrm{b}$
$=a \frac{a^{k}-1}{a-1} b+b$
$=\frac{a^{k+1}-a+a-1}{a-1} b$
$=\frac{a^{k+1}-1}{a-1} b$,
so $\mathrm{P}(\mathrm{k}+1)$ is also true. By induction we have for $\mathrm{k} \geq 0, x_{k}=\frac{a^{k}-1}{a-1} b$.
9. Consider the Fibonacci sequence: $f_{0}=1, f_{1}=1, f_{k}=f_{k-1}+f_{k-2}$, for $k \geq 2$. Using induction, prove that for $\mathrm{n} \geq 0, \sum_{k=0}^{n} f_{k}^{2}=f_{n} f_{n+1}$.

For $n \geq 0$, let $P(n)=" \sum_{k=0}^{n} f_{k}^{2}=f_{n} f_{n+1}$ ".
Basis step: $P(0)$ is true since $\sum_{k=0}^{n} f_{k}^{2}=f_{0}^{2}=1=1 \cdot 1=f_{0} f_{1}$.
Inductive step: For $n \geq 0, P(n) \Rightarrow P(n+1)$, since if $\sum_{k=0}^{n} f_{k}^{2}=f_{n} f_{n+1}$, then

$$
\begin{aligned}
\sum_{k=0}^{n+1} f_{k}^{2} & =\sum_{k=0}^{n} f_{k}^{2}+f_{n+1}^{2} \\
& =f_{n} f_{n+1}+f_{n+1}^{2} \\
& =f_{n+1}\left(f_{n}+f_{n+1}\right) \\
& =f_{n+1} f_{(n+1)+1} .
\end{aligned}
$$

10. Using induction, prove that for $\mathrm{n} \geq 0, \sum_{k=0}^{n}(2 k+1)=(n+1)^{2}$.

For $n \geq 0$, let $P(n)=" \sum_{k=0}^{n}(2 k+1)=(n+1)^{2}$ ".
Basis step: $P(0)$ is true since $\sum_{k=0}^{0}(2 k+1)=(2 \cdot 0+1)=1=(0+1)^{2}$.
Inductive step: For $n \geq 0, \quad P(n) \Rightarrow P(n+1)$, since if $\sum_{k=0}^{n}(2 k+1)=(n+1)^{2}$, then

$$
\begin{aligned}
\sum_{k=0}^{n+1}(2 k+1) & =\sum_{k=0}^{n}(2 k+1)+2(n+1)+1 \\
& =(n+1)^{2}+2(n+1)+1 \\
& =((n+1)+1)^{2} .
\end{aligned}
$$

11. Using induction, prove that for any real number a and for all integers $\mathrm{n}, \mathrm{m} \geq 1, a^{m n}=\left(a^{m}\right)^{n}$. You may assume for any real numbers α and β :
a. $\alpha^{1}=\alpha$,
b. $\alpha^{i} \alpha^{j}=\alpha^{i+j}$, for all integers $i, j \geq 1$,
c. $\alpha^{i} \beta^{i}=(\alpha \beta)^{i}$, for all integers $i \geq 1$.
(Hint: Fix $n \geq 1$.)
Fix $n \geq 1$. For $\mathrm{m} \geq 1$, let $P(m)=$ " $a^{m n}=\left(a^{m}\right)^{n "}$.
Basis step: $P(1)$ is true since $a^{1 \cdot n}=a^{n}=\left(a^{1}\right)^{n}$.
Inductive step on $m:$ For $m \geq 1, \quad P(m) \Rightarrow P(m+1)$, since if $a^{m n}=\left(a^{m}\right)^{n}$ then

$$
\begin{aligned}
a^{(m+1) n} & =a^{m+n+n}=a^{m m} a^{n} \\
& =\left(a^{m}\right)^{n} a^{n} \\
& =\left(a^{m} a\right)^{n} \\
& =\left(a^{m+1}\right)^{n} .
\end{aligned}
$$

12. Using induction, prove that for $\mathrm{n} \geq 2,2 n+3<n^{3}$.

For $n \geq 2$, let $P(n)=$ " $2 n+3<n^{3}$ ".
Basis step: $P(2)$ is true since $2 \cdot 2+3=7<8=2^{3}$.
Inductive step: For $n \geq 2, P(n) \Rightarrow P(n+1)$, since if $2 n+3<n^{3}$, then $3 \mathrm{n}>2$ and $3 n^{2}+1>0$ so:

$$
\begin{aligned}
2(n+1)+3 & =2 n+3+2 \\
& <n^{3}+2 \\
& <n^{3}+3 n \\
& <n^{3}+3 n^{2}+3 n+1=(n+1)^{3} .
\end{aligned}
$$

13. Using induction, prove that for $\mathrm{n} \geq 0,1 \leq 3^{n}$.

For $n \geq 0$, let $P(n)=$ " $1 \leq 3^{n "}$.
Basis step: $P(0)$ is true since $1 \leq 1=3^{0}$.
Inductive step: For $n \geq 0, P(n) \Rightarrow P(n+1)$, since if $1 \leq 3^{n}$, then $1 \leq 3$
$\leq 3 \cdot 3^{n}$
$\leq 3^{n+1}$.
14. Using induction and Problem 13, prove that for $n \geq 2,1+2 n<3^{n}$.

For $n \geq 2$, let $P(n)=" 1+2 n<3^{n "}$.
Basis step: $P(2)$ is true since $1+2 \cdot 2=5<9=3^{2}$.
Inductive step: For $n \geq 0, P(n) \Rightarrow P(n+1)$, since if $1+2 n<3^{n}$, then

$$
\begin{aligned}
1+2(n+1) & =1+2 n+2 \\
& <3^{n}+2 \\
& <3^{n}+2 \cdot 1 \\
& <3^{n}+2 \cdot 3^{n} \\
& <3^{n+1} .
\end{aligned}
$$

15. Consider the sequence: $a_{0}=2, a_{1}=1, a_{n}=a_{n-1}+2 a_{n-2}$, for $n \geq 2$. Using induction, prove that for $\mathrm{n} \geq 0, a_{n}=2^{n}+(-1)^{n}$.

For $n \geq 0$, let $P(n)=" a_{n}=2^{n}+(-1)^{n "}$.
Basis step: $P(0)$ and $P(1)$ are true since $a_{0}=2=1+1=2^{0}+(-1)^{0}$ and
$a_{1}=1=2-1=2^{1}+(-1)^{1}$.
Inductive step: For $n \geq 2, P(n) \Rightarrow P(n+1)$, since if $a_{n-2}=2^{n-2}+(-1)^{n-2}$ and $a_{n-1}=2^{n-1}+(-1)^{n-1}$, then

$$
\begin{aligned}
a_{n} & =a_{n-1}+2 a_{n-2} \\
& =2^{n-1}+(-1)^{n-1}+2\left(2^{n-2}+(-1)^{n-2}\right) \\
& =2^{n-1}-(-1)^{n}+2^{n-1}+2(-1)^{n} \\
& =2 \cdot 2^{n-1}+(-1)^{n} \\
& =2^{n}+(-1)^{n} .
\end{aligned}
$$

