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1. Using strong induction, I will prove that every positive integer can be written as a sum of 
distinct powers of 2. Thus for n  1,≥ ( ) =P n  “n  can be written as a sum of distinct powers of 
2” .  is true since 1 . Now consider any n  There exists an integer  so that  (1)P 02= 1.≥ k

12 1 2 +≤ + <k kn  . 
If , then  can be written as a sum of distinct powers of 2. If , then  2 1= +k n 1n + 2 ≠ +k n 1
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so 
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Since the value of  is positive but less than , the inductive hypothesis guarantees 
that  can be written as a sum of distinct powers of 2 and the powers are less than . 
Thus n  a sum of distinct powers of 2 and the powers are distinct. 
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2. Using strong induction, I will prove that the  Fibonacci sequence:  
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3. Using strong induction, I will prove that integer larger than one has a prime factor. Thus for 
  “  has a prime factor”.  is true since the prime 2 divides 2. Now 

consider any  The integer n  is either prime or not. If it is prime then it has a prime 
factor. If n  is not prime then it has some factor  satisfying  
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Thus by the inductive hypothesis,  has a prime factor and sok 1n +  must have that same 
prime factor.  

An example of double induction 
 
Template:  

0 0 0 0 0 0 0( , ) (( ) ( ( , ) ( , 1))) (( ) ( ( , ) ( 1, )))P m n n n P m n P m n m m n n P m n P m n∧ ≤ ⇒ ⇒ + ∧ ≤ ∧ ≤ ⇒ ⇒ +
or 

0 0 0 0 0 0 0( , ) (( ) ( ( , ) ( 1, ))) (( ) ( ( , ) ( , 1)))P m n m m P m n P m n m m n n P m n P m n∧ ≤ ⇒ ⇒ + ∧ ≤ ∧ ≤ ⇒ ⇒ +
 
Notice the first version does the final induction in the first parameter: m  and the second 
version does the final induction in the second parameter: n . Thus, the “basis induction step” 
(i.e. the one in the middle) is also different in the two versions. 
 
By double induction, I will prove that for   , 1≥m n
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Inductive step: For m n  , since if , 1≥ , ( , ) ( , 1)P m n P m n⇒ +
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