A Spring/Damper Suspension ODE Problem

Due Friday, December 6 by 12 noon

(From Recktenwald Problem 26, pp732-3)

The following is a simplified model of the suspension system of one wheel of an automobile.
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The input to the system is the time-varying displacement 
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 corresponding to changes in the terrain.  The shock absorber is characterized by its spring rate 
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 and damping coefficient 
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.  Damping in the tire is neglected. (There is no 
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 term.)

Applying Newton’s law of motion and force balances to the wheel and vehicle chassis yields the following system of equations:
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(a) Convert these two second-order equations into an equivalent system of first-order equations. (How many first-order equations are required?). Write a Matlab function yp = spring (t, y, m, k, c) that takes as input the time t, a column array y, and the constants m, k, and c (as arrays). Imbed the forcing function 
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We construct the new array 
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 so 
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 and this 

is implemented in the Matlab function:

function yp = spring (t, y, m, k, c)

yp = zeros(4,1);

yp(1) = y(3);

yp(2) = y(4);

yp(3) = (.05*sin(3*pi*t)-c(2)*(y(3)-y(4))-k(2)*(y(1)-y(2))-k(1)*y(1))/m(1);

yp(4) = (c(2)*(y(3)-y(4))+k(2)*(y(1)-y(2)))/m(2);

(b) [image: image1.jpg]Vehicle chassis, m,




Use Matlab function ode45 integration routine to solve this system on the time interval 
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 for 
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. Assume the system is at rest at 
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). Produce a plot that shows both 
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m = [110; 1900];

k = [136; 16];

c = [0; 176];

[t, y] = ode45 (@spring, [0 5], y0, [], m, k, c);

plot (t, y(:, 1), t, y(:, 2));

(c) [image: image20.png]


Repeat the solution with 
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 reduced by a factor of 5. 

C(2) = c(2)/5;

[t, y] = ode45 (@spring, [0 5], y0, [], m, k, c);

plot (t, y(:, 1), t, y(:, 2));
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