
Asymptotic Dominance Problems 
 

1.  Display a function  that is f N R: → Ο( )1  but is not constant. 
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2.  Define the relation " " on functions from N into R by ≤ f ≤  if and only if f g= Ο( ) .  
Prove that  is reflexive and transitive. (Recall: to be reflexive, you must ≤
 

To prove reflexivity, notice that for any  and all n , f N R: → ≥ 0 f n f n( ) ( )≤ ⋅1 . 
 
To prove transitivity, suppose f g= Ο( )  and g h= Ο( )

n ≥
, then by definition, there 

exist so that for , N M Nf f g≥ ≥ ≥0 0, , Mg ≥0 0, , N f f n M g nf( ) ( )≤  and 
for , n Ng≥ g n M h ng( ) ( )≤ .  Thus for n , Nmax{ ,N≥ f g} f n M M h nf g( ) ( )≤ . 
We may conclude that . f h= Ο( )
 

3. Suppose  and , prove or disprove (with a simple counter-example) 
that . 
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Suppose  and , then by definition, there exist 
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, n Ng≥ g n M( ) ≤ hg n( ) .  Thus for , n N≥ max{ }N f g, f n M M h nf g( ) ( )≤ . We 
may conclude that . f h( )= Ο

 
4. Suppose f = gο( )  and .  Prove that g = Ο( )h f h= ο( ) . 

 
Since  there exist  and  so that n),(hg Ο= 1M 1N |)(||)(| 11 nhMngN ≤⇒≥ . Given 

,0>ε  let 1/Mεε =′ . Since  )(gf ο= , there exist  such that 2N
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5. Suppose  and .  If hf = Ο( )g h fg = Ο( ) = Ο( ) , prove that h g= Ο( ) . 
 

By definition, there exist so that for n , N M N Mf f h h≥ ≥ ≥ ≥0 0 0, , , 0, N f≥

f n M g nf( ) ( )≤  and for , n Nh≥ h n M f nh( ) ( )≤ .  Thus for , n ≥ max{N f h, }N
h n M M g nf h( ) ( )≤ . We may conclude that h g= Ο( ) . 

 



6. Using Theorem 2 and induction prove that if for i k= 1 2, , ..., , , then f i = Ο( )gi
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7. Employing induction and Theorem 3, prove that if for i k= 1 2, , ..., , , then 
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8. Show that if  and , then f = O(g). f n n( )= +12 3 g n n( )= 2

 
Let  and . For 3=N 13=M Nn ≥ : 
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Thus f = O(g). 

 

9. Define  by . Prove that f N R: → f n
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For , n ≥ 18 f n n n( ) = ≤ ⋅1 , so f n= Ο( ) . 

 



10.  Consider the functions f and g defined on N by  and 

  Show that  but that 
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f = Ο( )g : Since for n , 2≥ 0 2 2n n≤ ; we have that 2 2 2n n≤  and n n2 22≤ , 

so f n( ) g n( )≤ 2 . Thus f g= Ο( ) . 
 
f ≠ gο( ) : Suppose f = gο( ) , then for ε = 1 2/  there is a non-negative N so that for 

all n N≥ , f n( ) g n( )≤ ε . But letting n = 2 if N = 0 and n = N or N+1 
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g f≠ Ο( ).
n
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N≥ , g n M( ) ≤ f n( ) . But letting n be odd and greater than N and 2M, then we 
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g f≠ Ο( ).

n M n M f n( )= = = =2 2 2n n Mn⋅ > . This is a contradiction, so 
 

 
11. Show that . 2n n= Ο( !)
 

For  and , we have n ≥ 2 i = 2 3, , ..., n 2 ≤ i
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12. Show that for any real value of a, . (Hint: be careful to consider negative 
values of a.) 

an = Ο( !)n
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13. Show that for any b > 1, log ( )b n n=ο  
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14. Prove that if 0 , then a b  ≤ <a b n n= ο ( )
 

If , then for all a = 0 ε > 0  and all , we have n ≥ 1 an = ≤0 ε bn

b
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15. Prove that if 0 , then  ≤ <a b n na b= ο ( )
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16. Prove that if 0 , then b a . < <a b n n≠ Ο( )
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17. Prove that n n= Ο ( )2 . 
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19. Using only Definition 1, prove that 3  ).( 5.44 nn Ο=
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20. Using only Definition 2, prove that 5  ).42( nn ⋅≠ ο
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21. Show that if  and f n n( )= 2 g n n( )= , then f ≠  o(g). 
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22. Show that  and 2 2log ! ( log )n n= Ο n 2 2log (log !)n n n= Ο . 
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By taking logs, we have for n , |8≥ 2 2 2log | log 3 log ! 3|log !|n n n n n n2= ≤ = . 
 

 


