Asymptotic Dominance Problems

1. Display a function $f: N \to R$ that is O(1) but is not constant.

The function
$$f(n) = \begin{cases} 0 & \text{if } n = 0 \\ 1 & \text{if } n > 0 \end{cases}$$
 is not constant but for $n \ge 0$, $|f(n)| \le 1 \cdot |1|$.

2. Define the relation " \leq " on functions from N into R by $f \leq g$ if and only if f = O(g). Prove that \leq is reflexive and transitive. (Recall: to be *reflexive*, you must

To prove reflexivity, notice that for any $f: N \to R$ and all $n \ge 0$, $|f(n)| \le 1 \cdot |f(n)|$.

To prove transitivity, suppose f = O(g) and g = O(h), then by definition, there exist $N_f \ge 0$, $M_f \ge 0$, $N_g \ge 0$, $M_g \ge 0$, so that for $n \ge N_f$, $|f(n)| \le M_f |g(n)|$ and for $n \ge N_g$, $|g(n)| \le M_g |h(n)|$. Thus for $n \ge \max\{N_f, N_g\}$, $|f(n)| \le M_f M_g |h(n)|$. We may conclude that f = O(h).

3. Suppose f = O(g) and g = O(h), prove or disprove (with a simple counter-example) that f = O(h).

Suppose f = O(g) and g = O(h), then by definition, there exist $N_f \ge 0$, $M_f \ge 0$, $N_g \ge 0$, $M_g \ge 0$, so that for $n \ge N_f$, $|f(n)| \le M_f |g(n)|$ and for $n \ge N_g$, $|g(n)| \le M_g |h(n)|$. Thus for $n \ge \max\{N_f, N_g\}$, $|f(n)| \le M_f M_g |h(n)|$. We may conclude that f = O(h).

4. Suppose f = o(g) and g = O(h). Prove that f = o(h).

Since g = O(h), there exist M_1 and N_1 so that $n \ge N_1 \Rightarrow |g(n)| \le M_1 |h(n)|$. Given $\varepsilon > 0$, let $\varepsilon' = \varepsilon / M_1$. Since f = o(g), there exist N_2 such that $n \ge N_2 \Rightarrow |f(n)| \le \varepsilon' |g(n)| = \varepsilon / M_1 |g(n)|$. Thus letting $N = \max\{N_1, N_2\}$, for $n \ge N$ we have $|f(n)| \le \varepsilon / M |g(n)| \le \varepsilon |h(n)|$ so f = o(h).

5. Suppose f = O(g) and g = O(h). If h = O(f), prove that h = O(g).

By definition, there exist $N_f \geq 0$, $M_f \geq 0$, $N_h \geq 0$, $M_h \geq 0$, so that for $n \geq N_f$, $|f(n)| \leq M_f |g(n)|$ and for $n \geq N_h$, $|h(n)| \leq M_h |f(n)|$. Thus for $n \geq \max\{N_f, N_h\}$, $|h(n)| \leq M_f M_h |g(n)|$. We may conclude that h = O(g).

6. Using Theorem 2 and induction prove that if for i = 1, 2, ..., k, $f_i = O(g_i)$, then $\sum_{i=1}^k f_i = O(\sum_{i=1}^k |g_i|).$

For
$$k=1$$
, we have $\sum_{i=1}^{1} f_i = f_1 = O(g_1) = O(\sum_{i=1}^{1} g_i)$. Now assume $\sum_{i=1}^{k} f_i = O(\sum_{i=1}^{k} |g_i|)$ and consider $\sum_{i=1}^{k+1} f_i$. Since $\sum_{i=1}^{k} f_i = O(\sum_{i=1}^{k} |g_i|)$ and $f_{k+1} = O(g_{k+1})$, Theorem 2 guarantees that $\sum_{i=1}^{k+1} f_i = \sum_{i=1}^{k} f_i + f_{k+1} = O(\sum_{i=1}^{k} |g_i| + |g_{k+1}|) = O(\sum_{i=1}^{k+1} |g_i|)$.

7. Employing induction and Theorem 3, prove that if for i = 1, 2, ..., k, $f_i = O(g)$, then $\sum_{i=1}^k f_i = O(g)$.

For
$$k=1$$
, we have $\sum_{i=1}^{1} f_i = f_1 = O(g)$ by hypothesis. Now assume $\sum_{i=1}^{k} f_i = O(g)$ and consider $\sum_{i=1}^{k+1} f_i$. Since $\sum_{i=1}^{k} f_i = O(g)$ and $f_{k+1} = O(g)$, Theorem 3 guarantees that $\sum_{i=1}^{k+1} f_i = \sum_{i=1}^{k} f_i + f_{k+1} = O(\max\{|g|, |g|\}) = O(|g|) = O(g)$.

8. Show that if f(n)=12n+3 and $g(n)=n^2$, then f=O(g).

Let
$$N = 3$$
 and $M = 13$. For $n \ge N$:
 $|f(n)| = |12n + 3| = 12n + 3 \le 12n + n = 13n \le 13n^2 = 13 |n^2| = M |g(n)|$.
Thus $f = O(g)$.

9. Define $f: N \to R$ by $f(n) = \begin{cases} 10^{100} & \text{for } n = 17 \\ n & \text{for } n \neq 17 \end{cases}$. Prove that f = O(n).

For
$$n \ge 18$$
, $|f(n)| = |n| \le 1 \cdot |n|$, so $f = O(n)$.

10. Consider the functions f and g defined on N by $f(n) = \begin{cases} n^2 & \text{for } n \text{ even} \\ 2n & \text{for } n \text{ odd} \end{cases}$ and $g(n) = n^2$. Show that f = O(g) but that $f \neq o(g)$ and $g \neq O(f)$.

f = O(g): Since for $n \ge 0$, $2n \le 2n^2$; we have that $|2n| \le 2|n^2|$ and $|n^2| \le 2|n^2|$, so $|f(n)| \le 2|g(n)|$. Thus f = O(g).

 $f \neq o(g)$: Suppose f = o(g), then for $\varepsilon = 1/2$ there is a non-negative N so that for all $n \geq N$, $|f(n)| \leq \varepsilon |g(n)|$. But letting n = 2 if N = 0 and n = N or N+1 (whichever is even) if N is positive, we have $|f(n)| = n^2 > \frac{1}{2}n^2 = \varepsilon |g(n)|$. This is a contradiction, so $f \neq o(g)$

 $g \neq O(f)$.: Suppose g = O(f), then there exist nonnegative M and N so that for all $n \geq N$, $|g(n)| \leq M |f(n)|$. But letting n be odd and greater than N and 2M, then we have $|g(n)| = n^2 = n \cdot n > 2Mn = M |2n| = M |f(n)|$. This is a contradiction, so $g \neq O(f)$.

11. Show that $2^n = O(n!)$.

For $n \ge 2$ and i = 2, 3, ..., n, we have $2 \le i$, thus $\prod_{i=2}^{n} 2 \le \prod_{i=2}^{n} i$. Therefore, $2^n = \prod_{i=1}^{n} 2 = 2 \cdot \prod_{i=2}^{n} 2 \le 2 \cdot \prod_{i=2}^{n} i = 2 \cdot \prod_{i=1}^{n} i = 2 \cdot n!$ and we have $\left| 2^n \right| \le 2 \cdot \left| n! \right|$, thus $2^n = O(n!)$.

12. Show that for any real value of a, $a^n = O(n!)$. (Hint: be careful to consider negative values of a.)

Define $K = \lceil \mid a \mid \rceil$ (i.e. K is the first integer greater than or equal to $\mid a \mid$). For $n \geq K$ and i = K, K+1, ..., n, we have $\mid a \mid \leq i$, thus $\prod_{i=K}^{n} \mid a \mid \leq \prod_{i=K}^{n} i$. Therefore, $\mid a \mid^{n} = \prod_{i=1}^{n} \mid a \mid = \mid a \mid^{K-1} \cdot \prod_{i=K}^{n} \mid a \mid \leq \mid a \mid^{K-1} \cdot \prod_{i=1}^{n} i = \mid a \mid^{K-1} n!$. So with $M = \mid a \mid^{K-1}$ and N = K, we have $\mid a^{n} \mid \leq M \cdot \mid n! \mid$ for all $n \geq N$. Thus $a^{n} = O(n!)$.

13. Show that for any b > 1, $\log_b n = o(n)$

Consider any positive ε , and choose $N = \left[1 + \frac{2}{(b^{\varepsilon} - 1)^2}\right]$. Then, if n > N, we have $n > 1 + \frac{2}{(b^{\varepsilon} - 1)^2}$, thus $\frac{(n-1)}{2}(b^{\varepsilon} - 1)^2 > 1$, and $\frac{n(n-1)}{2}(b^{\varepsilon} - 1)^2 > n$. But using the binomial theorem, we have

$$b^{\varepsilon n} = (b^{\varepsilon})^n = (1 + (b^{\varepsilon} - 1))^n = \sum_{j=0}^n \binom{n}{j} (b^{\varepsilon} - 1)^j > \binom{n}{2} (b^{\varepsilon} - 1)^2 > n.$$

By taking base b logarithms, we have

$$\varepsilon |n| = \varepsilon n = \log_b b^{\varepsilon n} > \log_b n = |\log_b n|.$$

14. Prove that if $0 \le a < b$, then $a^n = o(b^n)$

If a = 0, then for all $\varepsilon > 0$ and all $n \ge 1$, we have $\begin{vmatrix} a^n \end{vmatrix} = 0 \le \varepsilon \begin{vmatrix} b^n \end{vmatrix}$. Assume now that a > 0. Take $N = \ln(\varepsilon) / \ln(a/b)$ and (assuming $\varepsilon < 1$), for $n \ge N$, $n \cdot \ln(a/b) \le \ln(\varepsilon)$ and $\begin{vmatrix} a^n \end{vmatrix} = a^n \le \varepsilon \cdot b^n = \varepsilon \begin{vmatrix} b^n \end{vmatrix}$. (If $\varepsilon \ge 1$ then $\begin{vmatrix} a^n \end{vmatrix} = a^n \le \varepsilon \cdot b^n = \varepsilon \begin{vmatrix} b^n \end{vmatrix}$ for $n \ge 0$.) Thus $a^n = o(b^n)$.

15. Prove that if $0 \le a < b$, then $n^a = o(n^b)$

Given any $\varepsilon > 0$, let $N = (1/\varepsilon)^{1/(b-a)}$. Notice then for $n \ge N = (1/\varepsilon)^{1/(b-a)}$, $n^{b-a} \ge 1/\varepsilon$, and $n^{-(b-a)} \le \varepsilon$. So $|n^a| = |n^{-(b-a)} n^b| = |n^{-(b-a)}| |n^b| \le \varepsilon |n^b|$. Therefore, $n^a = o(n^b)$.

16. Prove that if 0 < a < b, then $b^n \neq O(a^n)$.

Given $M \ge 0$ and $N \ge 0$, let $\overline{M} = \max\{M,1\}$ thus $\overline{M} \ge M$ and $\ln(\overline{M}) \ge 0$. Notice that $\ln(\frac{b}{a}) > 0$ and choose $n = \max\{N, \left\lceil \frac{\ln(\overline{M})}{\ln(\frac{b}{a})} \right\rceil + 1$. For this n we have $n > \frac{\ln(\overline{M})}{\ln(\frac{b}{a})}$, thus $n \ln(\frac{b}{a}) > \ln(\overline{M})$ and $(\frac{b}{a})^n > \overline{M} \ge M$. But then $|b^n| = b^n > M$ $a^n = M$ $|a^n|$ so $b^n \ne O(a^n)$

17. Prove that $\sqrt{n} = O(n^2)$.

Let M = 1 and N = 1. For $n \ge N$, $n^{3/2} \ge 1$. Thus $|\sqrt{n}| = \sqrt{n} \le n^{3/2} \sqrt{n} = n^2 = 1 |n^2|$, so $\sqrt{n} = O(n^2)$.

18. Prove that $e^{(n^2)} \neq o(e^n)$.

Let $\varepsilon = 1$, consider and N, and choose $n \ge \max\{N,2\}$. Since $n \ge 2$, $n^2 \ge 2n > n$ and $|e^{n^2}| > e^n = \varepsilon |n|$ so $e^{(n^2)} \ne o(e^n)$.

19. Using only Definition 1, prove that $3n^4 = O(n^{4.5})$.

Let M = 3 and N = 1. For $n \ge N = 1$, we have $\sqrt{n} \ge 1$, so $|3n^4| \le 3 n^4 \sqrt{n} = 3 |n^{4.5}|$. Thus $3n^4 = O(n^{4.5})$.

20. Using only Definition 2, prove that $5^n \neq o(2 \cdot 4^n)$.

Let $\varepsilon = 1/4$ and suppose there exists N so that for all $n \ge N$, $|5^n| \le \varepsilon |2 \cdot 4^n|$. But for $n = \max\{1, \lceil N \rceil\}$, we have $n \ge N$ and $n \ge 1$, so $(\frac{5}{4})^n > 1$ and $5^n > 4^n$, thus $|5^n| = 5^n > 4^n = 1/2 |2 \cdot 4^n| = \varepsilon |2 \cdot 4^n|$ and $5^n \ne o(2 \cdot 4^n)$.

21. Show that if $f(n) = n^2$ and g(n) = n, then $f \neq o(g)$.

Let $\varepsilon = 1$ and consider any positive N. Let n = N + 1 so $n \ge 2$ and $n \ge N$. We have: $|f(n)| = |n|^2 = |n| \cdot |n| \ge 2 |n| > \varepsilon |n| = \varepsilon |g(n)|$. Thus $f \ne o(g)$.

22. Show that $\log_2 n! = O(n \log_2 n)$ and $n \log_2 n = O(\log_2 n!)$.

For $n \ge 1$, we have $\log_2 n! = \log_2 \left(\prod_{i=1}^n i\right) = \sum_{i=1}^n \log_2 i \le \sum_{i=1}^n \log_2 n = n \log_2 n$. Thus $|\log_2 n!| \le 1 \cdot |n \log n|$ and $\log_2 n! = O(n \log_2 n)$. To show $n \log_2 n = O(\log_2 n!)$ let N = 8 and M = 3. Notice that if $n \ge 8$, $\frac{n}{8} \ge 1$, so $\left(\frac{n}{2}\right)^3 = \frac{n}{8}n^2 \ge n^2$. Also notice that $\left\lceil \frac{n}{2} \right\rceil - 1 \le \frac{n}{2}$, so $n - \left\lceil \frac{n}{2} \right\rceil + 1 \ge n - \frac{n}{2} = \frac{n}{2}$. Finally $n^n = (n^2)^{n/2} \le \left(\left(\frac{n}{2}\right)^3\right)^{n/2} = \left(\frac{n}{2}\right)^{3n/2} \le \left(\frac{n}{2}\right)^{3(n-\left\lceil \frac{n}{2}\right\rceil+1)} = \prod_{k=\left\lceil \frac{n}{2}\right\rceil}^n \left\lceil \frac{n}{2}\right\rceil^3 \le \prod_{k=\left\lceil \frac{n}{2}\right\rceil}^n k^3 \le \prod_{k=1}^n k^3 = (n!)^3$.

By taking logs, we have for $n \ge 8$, $|n \log_2 n| = n \log_2 n \le 3 \log_2 n! = 3 |\log_2 n!|$.