The important issue is the logic you used to arrive at your answer.

1. Consider the functions \(f \) and \(g \) defined on \(\mathbb{N} \) by
 \[
 f(n) = \begin{cases}
 n^2 & \text{for } n \text{ even} \\
 2n & \text{for } n \text{ odd}
 \end{cases}
 \]
 and \(g(n) = n^2 \). Show that \(f = \Omega(g) \) but that \(f \neq o(g) \) and \(g \neq O(f) \).

2. Display a function \(f: \mathbb{N} \to \mathbb{R} \) that is \(O(1) \) but is not constant.
3. Define the relation "\(\leq \)" on functions from \(\mathbb{N} \) into \(\mathbb{R} \) by \(f \leq g \) if and only if \(f = O(g) \). Prove that \(\leq \) is reflexive and transitive. (Recall: to be reflexive, you must have \(f \leq f \) for all functions \(f \); to be transitive, you must have that \(f \leq g \) and \(g \leq h \) implies \(f \leq h \) for all functions \(f, g, \) and \(h \).)