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1. Proving f g ( ) . 

 
The definition of f g ( )  requires: 

Given the functions :f R  and :g R , f g ( )  if there exist non-

negative constants M  and N  such that for all n N , f n M g n( ) ( ) .  

 

The requirement that f n M g n( ) ( )  is equivalent to 
( )

( )


f n
M

g n
 if ( ) 0g n   (and thus 

the division by ( )g n  is legal).  In fact, if the function g  has no zeros, then the definition 

can dispense with the constant N  (i.e., 0N suffices).  If g  has a finite number of zeros, 

then showing f g ( )  is equivalent to showing that 
( )

( )

f n

g n
 can be bounded from above 

for all values of n  other than the where ( ) 0g n  .  (If g  has an infinite number of zeros, 

then showing f g ( )  can get a good deal more complicated.  In fact, it does not hold 

unless for sufficiently large values of n , all of the zeros of g  are also zeros of f .) 

 
The following theorem is a good example to see how one might construct proofs of the 
form f g ( )  in general. 

 

Theorem 6: If 0  a b , then n na b ( )   

 

Discovery of proof: We want to find the M  and N such that for all n N , a bn M n .  

 

 
Consistent with the hint, we’ll take 1N   and then concentrate on M .  In the end we’ll 

need a bn M n .  

 
 

Hint #1: When proving f g ( ) , choose N  big enough to avoid all zeros in g  

and also big enough to avoid any unusual behavior in both f  and g ; then forget 

about N  and concentrate on M .  

Hint #2: When proving f g ( ) , after choosing N , see if you can bound 
( )

( )

f n

g n
 

for all n N .  This bound will be M . 
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Using that hint, we need to bound 
a a

a b

b b

n n
n

n n

  . But since 0  a b , thus 0a b  , we 

can bound a bn   by 1 , so we take 1M  .  
 

So in this case we will have 1
a

a b a b b b

b

n
n n n n n

n

    . 

 
All of that was preliminary, but we can put it together to get the official proof. 
 

Proof: For 1n  , 0 1a bn n   , and 1
a

a b a b b b

b

n
n n n n n

n

    . Therefore, 

n na b ( ) . •  

 
 
2. Proving f g  ( ) . 

 
The definition of f g  ( )  requires: 

Given the functions f N R:   and g N R:  , f g  ( )  if for every positive  , 

there exists a non-negative constant N such that for all n N ,  f n g n( ) ( )  . 

 

The requirement that f n g n( ) ( )   for arbitrarily small   is equivalent to 

lim ( ) / ( ) 0



n

f n g n  if one can ignore the zeros of g .  (It is our intention here to discuss 

the techniques of formal proofs of results such as f g  ( ) .  Since it is assumed that the 

readers of this have not been acquainted with the formalities of limit proofs, transforming 
one problem into the other serves no benefits in terms of proofs.)  Similar to the format 
used in the first section for proving f g ( ) , in this section we will illustrate how 

f g  ( )  can be demonstrated.  We will use an example. 

 

Theorem 7: If 0  a b , then n na b  ( )   

 
Discovery of proof: This one is different from showing f g ( ) . Here we want to 

assume we are given a positive  , and then try to discover an N such that for all n N , 
a bn n .  (By the way, notice that the hypothesis here insists that a  is strictly less that 

b .  If not for that this result would not be true.) 

Hint #3: When proving f g ( ) , after choosing N  and M  in accordance with 

the previous hints, the format of the proof will be 
( )

( ) ( ) ( )
( )

f n
f n g n M g n

g n
   

(although there may be some extra steps slipped into the chain of inequalities for 
clarity. 
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This is easy in this example: chose 1N  .  Later we will make sure that our N  is at least 
this big by doing the max trick.  Henceforth, however, we will be assuming at least that 

n N . 

 

So in this case we want to manipulate the inequality 
a

b

n

n
 .  We could have a chain of 

inequalities such as this: 

( ) 1

1/( )

1/

(1/ )

a

b

a b

b a a b

b a

n

n

n

n n

n





 





   







  



 

So our 1/( )(1/ ) b asomething   . 

 

 
Notice that someplace in the chain of inequalities the inequality generally gets turned 
backwards.  Typically this happens by inversion or multiplication by a negative number.  
Here are some general rules. 
 

Hint #4: When proving ( )f g , start with a temporary N  (call it N ) big enough 

to avoid all zeros in g  and also big enough to avoid any unusual behavior in both f  

and g .  

Hint #5: When proving ( )f g , (assuming you are out of the range of any zeros of 

g ) consider the inequality 
( )

( )

f n

g n
 , which is equivalent to ( ) ( )f n g n .  Try to 

manipulate this into the form n something .  The something  may depend upon   but 

it may not involve n .  

Caution:  Try to construct the chain of inequalities in such a fashion that the order 
can be reversed.  Your proof will essentially be this reveral.  Notice that 3/n   

guarantees that 4/n   but the reverse does not work.  
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Recall that in this example our 1N   and 1/( )(1/ ) b asomething   , so we will let 
1/( )max{1,(1/ ) }b aN   .  The proof will just work backward from 1/( )(1/ ) b an    to 

a bn n .  Here it is. 

 

Proof: Given any   0 , let 1/( )max{1,(1/ ) }b aN   . Notice then for n N , 
1/( )(1/ ) b an   , so nb a  1/  , and n b a  ( )  . Therefore, 

( )a b a bn n n  ( )b a b bn n n    and n na b  ( ) . •  

 
3. Proving ( )f g  . 

 
Now we can turn to some ideas for proving a result of the form ( )f g  .  If we negate 

the definition of ( )f g  we obtain:  

Given the functions :f R  and :g R , ( )f g   if, for all non-negative 

constants M  and N , there exists an n N  so that ( ) ( )f n M g n .   

 
Showing ( )f g   can be tricky because, by definition, the proof must consider any given 

non-negative constants M  and N .  In the end, however, we only have to find a single 

Reminders on Inequalities:  Multiplication by non-negative number maintains 
inequalities, so x y sx sy    if 0s  , but if 0s   the inequality is reversed to 

sx sy .  Inversion of positive quantities reverses inequalities, so 
1 1

0 x y
x y

    .  

The general implication of ( ) ( )x y h x h x    holds only for monotonic functions 

h .  Examples of monotonic functions are ( ) xh x c  for any 1c  , ( ) log ch x x  for 

any 1c  , ( ) ch x x  for any 0c  , and 1/( ) cch x x x   for any 1c  .  Remember, 

using monotonic functions maintains inequalities. 

Hint #6:  When proving ( )f g , after choosing N  and something  according to the 

preceding hints, let max{ , }N N something .  By doing this “max trick”, taking 

n N  guarantees that both n N  and n something .  Now reverse the n something  

inequality back to 
( )

( )

f n

g n
  and then conclude by using the equivalent form 

( ) ( )f n g n .  You have shown ( )f g .  
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n N  such that ( ) ( )f n M g n .  Recall that when we were showing ( )f g , it was 

observed that this was equivalent to showing 
( )

( )


f n
M

g n
 (if we are able to ignore zeros of 

g ).  Now we want to show that no matter how large a bound M  and how far out into the 

natural numbers is dictated by N , we can find an n N  such that 
( )

( )

f n
M

g n
 .  Consider 

this example. 
 

Example: If 0  a b , then b an n ( ) . 

 
Discovery of proof:  We assume we are given non-negative constants M  and N .  The 

task is to find the n N  so that n nb M a .  

 

 
For this particular problem we don't really need to worry about this.  We could simply 

take 0N . Since our functions are defined only for natural numbers, as will be seen, a 

zero value of N  adds nothing to the assumptions.  The key issue is making n nb M a  

or, equivalently, making 
n

n

b
M

a
 .  

 

 

In our example here, we want 
n

n

b
M

a
 .  We could have a chain of inequalities such as 

this: 

Hint #7: When proving ( )f g  , start with a temporary N  (call it N ) big enough 

to avoid all zeros in g  and also big enough to avoid any unusual behavior in both f  

and g .  

Hint #8: When proving ( )f g  , (assuming you are out of the range of any zeros 

of g ) consider the inequality 
( )

( )


f n
M

g n
, which is equivalent to ( ) ( )f n M g n .  

Try to manipulate this into the form n something .  The something  may depend upon 

M  but it may not involve n .  
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( )

log log

log

log









n

n

n

b
M

a

b
M

a

b
n M

a

M
n

b

a

 

So our 
log

log

M
something

b

a

 . 

 
 
 
 

 
 

Recall that in this example our 0N   and 
log

log

M
something

b

a

 , so we will let 

log
max{0, 1}

log

M
N

b

a

  .  The proof will just work backward from 
log

log

M
n

b

a

  to 

n nb M a .  Here it is. 

 

Proof: Given M  0  and N  0 , notice that ln 0
b

a
  and choose 

ln
max{ , 1}

ln

M
n N

b

a

  .  

For this n, we have n N  and 
ln

ln

M
n

b

a

 , thus ln ln
b

n M
a
  and ( )n

b
M

a
 .  But then 

b b M a M an n n n    so b an n ( ) . •   

Hint #9:  When proving ( )f g  , after choosing N  and something  according to the 

preceding hints, let max{ , 1}N N something  .  By doing this “max trick”, taking 

n N  guarantees that both n N  and n something .  Now reverse the n something  

inequality back to 
( )

( )

f n
M

g n
  and then conclude by using the equivalent form 

( )
( ) ( ) ( )

( )

f n
f n g n M g n

g n
  .  You have shown ( )f g  .  
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4. Proving ( )f g .  

If we negate the definition of f g  ( )  we get: 

Given the functions f N R:   and g N R:  , ( )f g  if there exists a positive 

 , such that for every non-negative constant N there exists an n N , such that 

( ) ( )f n g n . 

 
In this case we are allowed to choose the   but that choice can be tricky.  Recall it was 
mentioned in Section 2 that another interpretation of ( )f g  was that 

lim ( ) / ( ) 0



n

f n g n .  If lim ( ) / ( )
n

f n g n  exists but is positive, then choosing   to be 

anything less than this limit (e.g., half the limit) will work for showing ( )f g .  Even if 

the limit does not exist, if there is an infinite number of values of ( ) / ( )f n g n  greater 

than some positive quantity  , then choosing   to be anything less   will work.  As in 
the previous sections, we will illustrate how ( )f g  can be demonstrated through an 

example. 
 
Example: If , 0a b  , then log loga bn n 1. 

 
Discovery of proof:  The most important task is to determine the appropriate  .  The 

value of lim log / log


a b
n

n n  is obviously loga b  since  log log loga b an a n   for 1n  .   

 

 

As an example, if just for prime numbers n , the ratio ( ) / ( )f n g n  tends to some  positive 

L , that L  will work. We know that for ( ) f g , the ratio would have to tend to zero, 

so if an infinite subset of the natural exists for which the ratio tends to a non-zero (hence 
positive) value, we could not have that ( ) f g . 

 

In the particular example we know that the limit of the ratio is loga b , so we will let 

log / 2a b  .  The next step is discovering an n  greater than or equal to a given N  so 

that ( ) / ( )  f n g n . This will then guarantee that ( ) ( )f n g n .  

                                                           
1
 Since we have assumed that all functions in this presentation are defined for all natural numbers, we 

should not be using loga n  or logb n  since neither of these are defined for 0n  .  Since the subject of 

asymptotic dominance deals only with the behavior of functions for large values on n , how we define 

log 0a  and log 0b  will have no effect on the results.  In this case, we will use the previous definitions of  

big-O and little-o except that we allow functions to be defined on ~{0} . 

Hint #10: When proving ( ) f g , consider the ratio ( ) / ( )f n g n  for large values 

of n .  If this ratio approaches some value 0L   for any infinite subset of the natural 
numbers, select / 2L  . 

Hint #11:  When proving ( ) f g , (assuming you are out of the range of any zeros 

of g ) consider the inequality 
( )

( )

f n

g n
 , which is equivalent to ( ) ( )f n g n .  Try 

to manipulate this into the form n something .  The something  may depend upon   

but it may not involve n .  
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For the example, we want 
log

log / 2
log

a
a

b

n
b

n
 .  In general, we would have a chain of 

inequalities transforming this into n something , but since  for 1n   
log

log 0
log

a
a

b

n
b

n
  , 

it is obvious that for any 1n  , 
log

log / 2
log

a
a

b

n
b

n
 .  Our something  here doesn’t even 

depend upon   (but typically it would).  We can take 0something  . 

 
 
  
 
 
 
 

 
 

 
 
We are ready for the proof. 
 

Proof: Let log / 2a b  . Given any non-negative N , let max{ ,n N 1}.  Since  

log log loga b an a n  , we have log log log log / 2 log loga b b b b bn a n a n n   .  We 

conclude that ( )f g .  •  

Hint #12:  When proving ( )f g , after choosing something  according to the 

preceding hint, let max{ , 1}n N something  .  Taking this n  guarantees that both 

n N  and n something .  Now reverse the n something  inequality back to 
( )

( )

f n

g n
  

and then conclude by using the equivalent form 
( )

( ) ( ) ( )
( )

f n
f n g n g n

g n
  .  You 

have shown ( )f g .  


