1. [20] Using only Definition 2', prove that the set of finitely long strings using characters from $\{A, B, C, ..., Z, a, b, c, ..., z\}$ is infinite.

Let $S = \text{set of finitely long strings of } \{A, B, C, ..., Z, a, b, c, ..., z\}$. For $s \in S$, define $f: S \to S$ by $f(s) = A \mid s$ (i.e. the string consisting of A concatenated with s). For $s,t \in S$, if $s \neq t$, then $f(s) = A \mid s \neq A \mid t = f(t)$, so f is one-to-one. Let $u = \langle B \rangle$. Since for all $s \in S$ the first element of f(s) is an A, there is no $s \in S$ such that f(s) = u. We have then that f maps S into $S \sim \{u\}$, which is a proper subset of S, and by Definition 2', S is infinite.

2. [20] Consider this theorem (that relies upon the Axiom of Choice):

If $f: A \xrightarrow{\text{onto}} B$, then there exists a subset \hat{A} of A such that $f: \hat{A} \xrightarrow{\text{1-1}} B$. Use his theorem to prove: If $f: A \xrightarrow{\text{onto}} B$, and B is infinite then A is infinite.

If $f: A \xrightarrow{onto} B$, then there exists a subset \hat{A} of A such that $f: \hat{A} \xrightarrow{1-1} B$ thus $f^{-1}: B \xrightarrow{1-1} \hat{A}$. If B is infinite then by Theorem 4 \hat{A} is infinite and by Theorem 3 A is infinite.

3. [20] Is the set of infinitely long strings using characters from {A, B, C, ..., Z, a, b, c, ..., z} finite, countably infinite, or uncountably infinite? Prove your claim.

The set is uncountably infinite. Let $\mathbb S$ denote the set of infinitely long strings using characters from $\{A, B, C, ..., Z, a, b, c, ..., z\}$ and B denote the set of infinitely long bit strings. Define $f: B \to \mathbb S$ by: f(s) for a bit string s replaces every 0 in the string with the character A and every A in the string with the character A and in the strings and A and A and A must differ in some position A, (one having a A and one having a A and one having a A and one having a A. Thus, A is one-to-one. The set A is uncountably infinite by Theorem and thus, by Theorem A, A is uncountably infinite.

4. [20] Prove that $\sqrt{n^3 + 1} = o(n^2)$.

Given any $\varepsilon > 0$, let $N = \max\{1, 2/\varepsilon^2\}$. Notice then for $n \ge N$, we have $n \ge 1$ and $n \ge 2/\varepsilon^2$. Thus $\frac{2}{n} \le \varepsilon^2$ and $\frac{n^3 + 1}{n^4} \le \frac{2n^3}{n^4} \le \varepsilon^2$. So $\frac{\sqrt{n^3 + 1}}{n^2} = \sqrt{\frac{n^3 + 1}{n^4}} \le \varepsilon$ and $|\sqrt{n^3 + 1}| = \sqrt{n^3 + 1} \le \varepsilon n^2 = \varepsilon |n^2|$. Therefore, $\sqrt{n^3 + 1} = o(n^2)$.

5. **[20]** Employing induction and Theorem 4, prove that for $k \ge 1$, if for i = 1, 2, ..., k, $f_i = O(g)$, then $\prod_{i=1}^k f_i = O(g^k)$.

For
$$k=1$$
, we have $\prod_{i=1}^1 f_i = f_1 = \mathrm{O}(g) = \mathrm{O}(g^1)$ by hypothesis. Now assume $\prod_{i=1}^k f_i = \mathrm{O}(g^k)$ and consider $\prod_{i=1}^{k+1} f_i = \prod_{i=1}^k f_i \cdot f_{k+1}$. Since $\prod_{i=1}^k f_i = \mathrm{O}(g^k)$ and $f_{k+1} = \mathrm{O}(g)$, Theorem 4 guarantees that $\prod_{i=1}^{k+1} f_i = \mathrm{O}(g^k \cdot g) = \mathrm{O}(g^{k+1})$.

6. [20] Prove that polynomials are asymptotically dominated by their largest power: That is, for $k \ge 0$, $\sum_{i=0}^{k} a_i n^i = O(n^k)$.

By Theorem 6, $0 \le i \le k, n^i = O(n^k)$. By Theorem 1, $0 \le i \le k, a_i n^i = O(n^k)$. By Corollary 3.2, $k \ge 0, \sum_{i=0}^k a_i n^i = O(n^k)$.