- 1. The important issue is the logic you used to arrive at your answer.
- 2. Use extra paper to determine your solutions then neatly transcribe them onto these sheets.
- 3. Do not submit the scratch sheets. However, all of the logic necessary to obtain the solution should be on these sheets.
- 4. Comment on all logical flaws and omissions and enclose the comments in boxes
- **1. a. [5]** How many strings of length $n \ge 0$ using characters a, b or c with possible repetition, have exactly n_a as and n_b bs (where $n_a + n_b \le n$)?

Into the n positions of the string, there are $\binom{n}{n_a}$ selections for the positions of the n_a as and, given that, $\binom{n-n_a}{n_b}$ selections for the positions of the n_b bs. Once the positions for the as and bs are fixed, the positions for the as is determined. Thus there are $\binom{n}{n_a}\binom{n-n_a}{n_b} = \binom{n}{n_a}\binom{n-n_a}{n_b}$ such strings.

b. [10] How many strings of length $n \ge 0$ using characters a, b or c with possible repetition, have either exactly n_a as or exactly n_b bs or both (where $n_a + n_b \le n$)?

For the case of exactly n_a as, into the n positions of the string, there are $\binom{n}{n_a}$ selections for the positions of the p_a as and, given that, p_a selections for the positions of the p_a selections for the positions of the p_a selections of the p_a selections of the string, there are $\binom{n}{n_b}$ selections for the positions of the p_a selections for the p_a selections of the p_a selections for the p_a selections for the p_a selections for the p_a selections of the p_a selections for the

2. [10] For $n \ge 1$, how many four-tuples $\langle i,j,k,l \rangle$ of non-negative values i,j,k, and l satisfy $i+j+k+l \le n$? (Hint: First consider the situation i+j+k+l=n and then think about m=n-(i+j+k+l).)

Consider placing n indistinguishable balls into five bins labeled i,j,k,l, and m. Since the number of balls in the m bin is non-negative, each such placement corresponds to a single selection of a four-tuple $\langle i,j,k,l \rangle$ of non-negative values i,j,k, and l satisfying $i+j+k+l \leq n$. There are $\binom{n+4}{4}$ such placements of n indistinguishable balls into five bins, therefore the same number of four-tuples $\langle i,j,k,l \rangle$ of non-negative values i,j,k, and l satisfying $i+j+k+l \leq n$.

3. a. [10] Using a combinatorial argument, prove that for $n \ge 1$ and $m \ge 2$:

$$\sum_{k=0}^{n} \binom{n}{k} (m-1)^{n-k} = m^n$$

Consider strings of length n selected from the integers $\{1,2,...,m\}$ with repetition allowed. For each of n positions there are m choices, so there are m^n such strings. Alternatively, let k indicate the number of copies of m in the string. The value of k varies from 0 to n. For a fixed value of k there are $\binom{n}{k}$ selections for the placement of the m s and then (m-1) choices for the integers $\{1,2,...,m-1\}$ in each of the n-k remaining positions. Thus there are $\binom{n}{k}(m-1)^{n-k}$ such strings with k copies of m, and $\sum_{k=0}^{n} \binom{n}{k}(m-1)^{n-k}$ overall. This must equal m^n .

b. [10] Using a combinatorial argument, prove that for $n \ge k \ge 0$:

$$\binom{n}{k}k!(n-k)! = n!$$

Consider permutations of length n selected from the integers $\{1,2,...,n\}$. There are n! such permutations. Alternatively, let k satisfy $n \ge k \ge 0$ and for any permutation first select the positions to be occupied by $\{1,2,...,k\}$. There are $\binom{n}{k}$ such selections. Now permute the values $\{1,2,...,k\}$ - there are k! such permutations. Finally, permute the n-k values $\{k+1,k+2,...,n\}$, which can be done in (n-k)! ways, and place them into the positions of the permutation notoccupied by

the values from $\{1,2,...,k\}$. Thus, there are $\binom{n}{k}k!(n-k)!$ such permutations and this must equal n!.

4. a. [10] For $3 \le m \le n$, what is the probability that a string of length m selected without repetition from $\{1,2,...,n\}$ contains the substring $\langle 1,2,3\rangle$? (You may assume all strings of length m selected without repetition from $\{1,2,...,n\}$ are equally probable.)

There are $\frac{n!}{(n-m)!}$ such equally probable strings. To count the number containing the substring $\langle 1,2,3\rangle$, consider that we first position the substring $\langle 1,2,3\rangle$. There are m-2 positions for the initial 1, so there are m-2 positions for the substring. The remainder of the m-3 positions of the string consists of characters from $\{4,5,...,n\}$ of size n-3. Thus, there are $(m-2)\frac{(n-3)!}{((n-3)-(m-3))!}$ strings of length m selected without repetition from $\{1,2,...,n\}$ containing the substring $\langle 1,2,3\rangle$. The probability of such a string is $(m-2)\frac{(n-3)!}{(n-m)!}/\frac{n!}{(n-m)!}$. (This value equals $\frac{m-2}{n(n-1)(n-2)}$ and an alternative argument results in this expression directly.)

5. [10] Using definition 2' (and no cardinality theorems) show that the set of reciprocals of positive integers (i.e., $\{1/p | p \in \mathbb{Z} \land p > 0\}$) is infinite.

Consider the mapping $f:\{1/p|p\in\mathbb{Z}\land p>0\}\to\{1/p|p\in\mathbb{Z}\land p>0\}$, defined by $f(\frac{1}{p})=\frac{1}{p+1}$, for $p\in\mathbb{Z}$ and p>0. Since for $\frac{1}{p_1}\neq\frac{1}{p_2}$, $p_1\neq p_2$ then $p_1+1\neq p_2+1$ and $f(p_1)=\frac{1}{p_1}\neq\frac{1}{p_2}=f(p_2)$. The mapping is one-to-one. Lastly $1=\frac{1}{1}\in\{1/p|p\in\mathbb{Z}\land p>0\}$ but if $f(\frac{1}{p})=\frac{1}{p+1}=1$ then p=0, but $0\notin\{1/p|p\in\mathbb{Z}\land p>0\}$, so no value exists such that $f(\frac{1}{p})=1$ and f maps into a strict subset of $\{1/p|p\in\mathbb{Z}\land p>0\}$. Therefore by Definition 2' $\{1/p|p\in\mathbb{Z}\land p>0\}$ is infinite.

6. a. [10] Let $A = \{a,b,c,...,z,A,B,C,...,Z\}$ and and let B be the set of finite strings from A, that is $B = \{\langle \boldsymbol{a}_1, \boldsymbol{a}_2,...\boldsymbol{a}_n \rangle | n \in \mathbb{N} \land \boldsymbol{a}_i \in A \ for \ i=1,2,...,n\}$. Is the set B finite, countably infinite, or uncountably infinite? Prove your claim.

B is countably infinite. For $n \in \mathbb{N}$ define B_n to be the strings from A of length exactly n (i.e. $B_n = \{\langle \mathbf{a}_1, \mathbf{a}_2, ... \mathbf{a}_n \rangle | \mathbf{a}_i \in A \ for \ i = 1, 2, ..., n\}$). The cardinality of B_n is 52^n and thus B_n is finite. However $B = \bigcup_{n \in \mathbb{N}} B_n$ thus by Theorem B is countable.

B contains the subset $\{\langle \rangle, \langle a \rangle, \langle aa \rangle, ...\}$ (i.e. the set of strings of a s of length n for every $n \in \mathbb{N}$). This set is infinite, thus by Theorem B is infinite. We conclude B is countably infinite

b. [5] Prove that the set of finite sets of real values from [0,1] $C = \{\{x_1, x_2, ..., x_n\} \mid n \in \mathbb{N} \land x_i \in [0,1] \text{ } for i = 1,2,...,n\} \text{ is uncountably infinite.}$

Consider the mapping $f:[0,1] \to C$ defined by $f(x) = \{x\}$. Since for $x_1 \neq x_2$, $f(x_1) = \{x_1\} \neq \{x_2\} = f(x_2)$. The mapping is one-to-one. By Theorem 11, C is uncountably infinite.

7. [10] Prove that if $f_1 = O(g_1)$ and $f_2 = o(g_2)$, then $f_1 f_2 = o(g_1 g_2)$.

There exist M and N_1 so that for $n \ge N_1$, $|f_1(n)| \le M |g_1(n)|$. Given $\mathbf{e} > 0$, there exists N_2 so that for $n \ge N_2$, $|f_2(n)| \le \frac{\mathbf{e}}{M} |g_2(n)|$, thus for $n \ge \max\{N_1, N_2\}$, $|f_1(n)| \le M |g_1(n)| = \mathbf{e} |g_2(n)| = \mathbf{e} |g_1(n)| = \mathbf{e} |g_1(n)|$, so $|f_1| = \mathbf{e} |g_2(n)| = \mathbf{e} |g_1(n)| = \mathbf{e} |g_1(n)| = \mathbf{e} |g_2(n)| = \mathbf{e} |g_1(n)| = \mathbf{e} |g_1(n)| = \mathbf{e} |g_2(n)| = \mathbf{e} |g_1(n)| = \mathbf{e}$

8. [10] . For a fixed value of k, define $f(n) = \binom{n}{k}$. Prove that $f(n) = O(n^k)$

For
$$n \ge k$$
, $|f(n)| = \binom{n}{k} = \frac{1}{k!} n \cdot (n-1) \cdots (n-k+1) \le \frac{1}{k!} n^k = \frac{1}{k!} |n^k|$, so $f(n) = O(n^k)$.

9. [10] Assuming x and y are integer variables, prove correct with respect to precondition " $x \ge 0$ and y is defined" and postcondition " $x + y \ne 11$ ":

$$\begin{aligned} &\textbf{if } y > \textbf{2 then} \\ & & x := y + 6 \\ & \textbf{if } x < 10 \textbf{ then} \\ & & y := 1 \\ & \textbf{endif} \end{aligned}$$

$$x := y + 4$$

endif

10. a. [10] Prove the following code is partially correct with respect to precondition " $n \ge 0$ " and postcondition " $s = \sum_{i=1}^{n} a_i b_i$ " (assume k and s are integer variables and a and b are integer arrays of length at least n.):

```
\begin{array}{l} k:=1\\ s:=0\\ \textbf{while}\ k\leq n\ \textbf{do}\\ s:=s+(a[k]^*b[k])\\ k:=k+1\\ \textbf{endwhile} \end{array}
```

Be explicit about your loop invariant.

...**b.** [5] Prove that the loop terminates.

11. a. [10] Determine the weakest precondition with respect to the postcondition "w > 0" for the following (assume w, z, y, and x are integer variables and that y and z are defined):

$$x := y$$

 $y := x$
 $x := z$
 $y := x$
 $w := x+y+z$

b. [5] For the same piece of code, determine the weakest precondition with respect to the postcondition "wy = 12"

12. [10] Determine the weakest precondition with respect to the postcondition "y = 1" for the following code (assume z, y, and x are integer variables and that x and z are defined):

```
\begin{array}{c} \text{if } x{<}3 \text{ then} \\ y:=z \\ \text{if } y{<}z \text{ then} \\ y:=2^*y \\ \text{endif} \\ \text{else} \\ y:=z{-}y \\ \text{endif} \end{array}
```