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1. a. [5] For 1,n  how many Boolean (i.e. true- or false-valued) functions exist for n  Boo-

lean variables?  
 

The domain of such a function is { , }nTrue False , a set of cardinality 2n . For a 

given function, there are two options for the value defined for each variable – thus 

there are (2 )2
n

 such functions. 
 

2. [10] For n  1, how many five-tuples , , , ,i j k l m  of non-negative values , , ,i j k  and l  

satisfy     i j k l m n ? (Hint: First consider the situation     i j k l m n  and 

then think about ( )     p n i j k l m .) 

 
Consider placing n  indistinguishable balls into six bins labeled , , , ,i j k l m  and p . 

Since the number of balls in the p  bin is non-negative, each such placement cor-

responds to a single selection of a five-tuple , , , ,i j k l m  of non-negative values 

, , ,i j k l  and m  satisfying     i j k l m n .  There are 
5
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 such placements 

of n  indistinguishable balls into six bins, therefore the same number of five-tuples 

, , , ,i j k l m  of non-negative values , , ,i j k l  and m  satisfying     i j k l m n . 

 



3. a. [10] Using a combinatorial argument, prove that for n  1  and 2m  : 
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Consider strings of length n  selected from the integers {1,2,..., }m  with repetition 

allowed.  For each of n  positions there are m  choices, so there are nm  such 
strings.  Alternatively, let k  indicate the number of copies of m  in the string.  The 

value of k  varies from 0  to n .  For a fixed value of k  there are 
n

k
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 selections 

for the placement of the m s and then ( 1)m   choices for the integers 

{1,2,..., 1}m  in each of the n k  remaining positions. Thus there are 
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 such strings with k  copies of m , and 
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This must equal nm .  
 
b. [10] Using a combinatorial argument, prove that for 0n k  : 
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Consider permutations of length n  selected from the integers {1,2,..., }n .  There 

are !n  such permutations.  Alternatively, let k  satisfy 0n k   and for any per-

mutation first select the positions to be occupied by {1,2,..., }k . There are 
n
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such selections.  Now permute the values {1,2,..., }k  - there are !k  such permuta-

tions.  Finally, permute the n k  values { 1, 2,..., }k k n  , which can be done in 

( )!n k  ways, and place them into the positions of the permutation notoccupied 

by the values from {1,2,..., }k .  Thus, there are !( )!
n

k n k
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and this must equal !n .  
 

4. a. [10] For 5n  , what is the probability that a string of n zeros and ones has exactly 5 
ones. (You may assume all strings of n zeros and ones are equally probable.) 
 

There are 2n equally likely strings with n zeros and ones. Of these 
5
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 have exactly 

5 ones so the probability of exactly 5 ones is / 2 .
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   b. [5]  For 5n  , what is the probability that a string of n zeros and ones has exactly 5 
ones given that it has at least 4 ones. (You may assume all strings of n zeros and ones are 
equally probable.) 
 

There are 
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   strings of n zeros and ones that have at least 4 ones. From part 

a, we know that there are 
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 string with exactly 5 ones – and each has at least 4 

ones, so the probability that a string of n zeros and ones has exactly 5 ones given 

that it has at least 4 ones is 
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5. [15] Prove: If A  is a nonempty set, P(A), the power set of A, is not countably infinite. 

 
Suppose there was a set A such that P(A) were countably infinite. A could not be 

finite since then  |P(A)| = | |2 A and so P(A) would be finite as well. A could not be 

uncountably infinite since the mapping  :f A  P(A) defined by ( ) { }f a a  

maps A one-to-one into P(A), so by Theorem 10, P(A) must be uncountably infi-

nite. Lastly, suppose A is countably infinite.  Let 1 1:
onto

g A  and  
1 1:
onto

h   P(A),  then g  is invertible so 1 11 :
onto

h g A    P(A).  Define 
1{ | ( )}A a A a h g a   .  Since A P(A),  let 1 1( ) ( )a h g A   (that is a  sa-

tisfies 1( )h g a A  ).  If a A  there is a contradiction since then by the defini-

tion of A , a A . Yet if a A  then for the same reason a A . Thus either way, 
there is a contradiction and the assumption that A is countably infinite is false. 
Since  A cannot be finite, uncountably infinite, or countably infinite, A does not 
exist. 

 



6. a. [10] Prove this corollary to Theorem 6: 

Given a countably infinite collection of finite sets  i i
A


 satisfying 0A   and for 

1,i   
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 is countably infinite. (In other words, if each set contains at least one ele-

ment not contained in its predecessors, the union cannot be finite.) 
 

Theorem 6 guarantees that i
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 is countable.  For each i , select 
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  by ( ) if i a .  For 1 2i i , assume without 

loss of generality that 1 2i i , then 
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so 1 2( ) ( )f i f i  and f  is one-to-one.  By Theorem 4, i

i

A


 is infinite and thus 

countably infinite. 
 
7. [10] Prove that if , ,f g  and h  are real-valued functions defined on the natural numbers, 

then ( )f g  and ( )g h   imply ( ).f h  

 

Since ( )g h  , there exist non-negative constants M and 1N  such that for all 

1n N , ( ) ( )g n M h n .  Suppose we are given a positive  . Since ( )f g  

there exists a non-negative constant 2N  such that for all 2n N ,  

( ) ( )f n g n
M


 .  But then we have for 1 2max{ , }n N N , 

( ) ( ) ( ) ( )f n g n M h n h n
M M

 
   . We conclude that ( ).f h   

 

8. [10] . Prove that if 0 a b  , then ( )b an n   

 

Suppose   ( )b an n  and thus there exist non-negative constants M and N  such 

that for all n N , b an M n .  We note that since a b , 
1

b aM   exists and is 

positive. Choose 
1

max{ , 1}b an N M 
 

  
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. We then have n N  and 
1

b an M  , so 

b an M   and | | | |b b a an n Mn M n   . This is a contradiction so ( )b an n  . 

 



9. [10] Assuming x  and y  are integer variables, prove correct with respect to precondi-

tion “ y  is defined” and postcondition “ x y ”: 

 
if y > 3 then  
 x := y+6 

if x > 11 then 
  y : = 11 
 endif 
else 
 x := y-2 
 y := y-1 
endif 

 
 

______________________ y  is defined 

if y > 3 then  
 ________________ 3y   

x := y+6 
 ________________ ( 3) ( 6)y x y     

  
if x < 11 then 

  __________ ( 3) ( 6) ( 11)y x y x       

  __________ ( 3) ( 9)y x    

y : = 11 
  __________ ( 11) ( 9)y x    

__________ x y  

endif 
 ________________ ( ) (( 3) ( 6) ( 11))x y y x y x         

 ________________ ( ) ( 6)x y x y     

 ________________ x y  

else 
 ________________ 3y   

 x := y-2 
________________ ( 3) ( 2)y x y     

________________ 2x y   

 y := y-1 
________________ ( ' 1) ( ' 2)y y x y      

________________ 1x y   

 ________________ x y  

endif 
______________________ ( ) ( )x y x y    

______________________ x y  

 



10. [10] Prove the following code is partially correct with respect to precondition “true” 
and postcondition “ 1x ” (assume x is an integer variable.): 
 

x := 0 
while x = 0 do 
 x := 1 
endwhile 

 
Be explicit about your loop invariant: I = 



11. a. [10] Prove the following code is partially correct with respect to precondition 

“ 1n  ” and postcondition “ ( / 2 ) ( ) ( 0 2 )        jk n k n j k ” (assume k and n are 

integer variables.): 
 

k := 1 
while k < n  do 
 k := 2*k 
endwhile 

 

Be explicit about your loop invariant: I = ( / 2 ) ( 0 2 )jk n j k       

 
____________________ 1n   
k := 1 
____________________   ( 1) ( 1)n k  

____________________ ( / 2 ) ( 0 2 )jk n j k       

while k < n  do 

 ______________ ( / 2 ) ( 0 2 ) ( )jk n j k k n         

 ______________ ( ) ( 0 2 )jk n j k       

k := 2*k 

 ______________ ( ' ) ( 0 ' 2 ) ( 2 ')jk n j k k k         

 ______________ ( / 2 ) ( 0 2 )jk n j k       

endwhile 

____________________ ( / 2 ) ( ) ( 0 2 )        jk n k n j k  

 
 b.  [5] Prove that the loop terminates. 



12. [10] Assuming max, a, b, and c are integer variable and that a, b, and c are defined, 
determine the weakest precondition with respect to the postcondition  

“ (min min min ) (min ) (min ) (min )a b c a b c           ”: 

 
if b < a then  
 {if b < c then 
  min : = b 
 else 
  min := c} 
else 
 {if c < a then 
  min : = c} 



13. a. [10] Determine the weakest precondition with respect to the postcondition “z = 2” 
for the following (assume z, y, and x are integer variables).  Simplify your answer so that 
there are NO logical operators. 
 
x := 3 
z := 2*x-y 
if y>0 then 
 z := z-2 
else 
 z := -z 
endif 
 
 
 
 
 
 
 
 
 
 
 
b. [5] Determine the weakest precondition with respect to the postcondition 
“ ( ) ( ')x y y x   ” for the following (assume y, and x are integer variables and are de-

fined): 
 

x = y 
 


