CS 336

Final Examination Solutions

1. a. [5] For »>1,how many Boolean (i.e. true- or false-valued) functions exist for » Boo-

lean variables?

The domain of such a function is {True, False}", a set of cardinality 2". For a
given function, there are two options for the value defined for each variable - thus

there are 2?7 such functions.

2. [10] For n>1, how many five-tuples <i, J,K, I,m> of non-negative values i, j,k, and |
satisfy 1+ j+Kk+1+m<n? (Hint: First consider the situation i+ j+k+I+m=n and
then think about p=n—(i+ j+k+1+m).)

Consider placing n indistinguishable balls into six bins labeled 1, j,k,I,m and p.
Since the number of balls in the p bin is non-negative, each such placement cor-

responds to a single selection of a five-tuple <i, I, k,I,m) of non-negative values

n+5
I, ,k,I and m satisfying i+ j+K+1+m<n. There are( . J such placements

of n indistinguishable balls into six bins, therefore the same number of five-tuples
<i, j,k,l,m> of non-negative values i, j,K,| and m satisfying i+ j+k+I+m<n.



3. a.[10] Using a combinatorial argument, prove that for N>1 and m>2:

Zn:(U (m-1)*=m"

k=0

Consider strings of length n selected from the integers {1,2,...,m} with repetition

allowed. For each of n positions there are m choices, so there are m" such
strings. Alternatively, let kK indicate the number of copies of M in the string. The

n
value of k varies from 0 to n. For a fixed value of k there are [kj selections

for the placement of the ms and then (m—1) choices for the integers
{L,2,...,m—=1} in each of the Nn—k remaining positions. Thus there are

n nn

[kj(m —1)"* such strings with K copies of m, and Z(k) (Mm—1)""* overall.
k=0

This must equal m".

b. [10] Using a combinatorial argument, prove that for N>k >0:

[an!(n—k)!:n!
K

Consider permutations of length n selected from the integers {1,2,...,n}. There
are Nl such permutations. Alternatively, let K satisfy N>k >0 and for any per-

n
mutation first select the positions to be occupied by {L,2,...,k}. There are (kj

such selections. Now permute the values {1,2,...,k} - there are k! such permuta-
tions. Finally, permute the n—k values {k +1,k +2,...,n}, which can be done in
(n—=k)! ways, and place them into the positions of the permutation notoccupied

n
by the values from {1,2,...,k}. Thus, there are (kjk I(n—k)! such permutations

and this must equal n!.

4. a. [10] For n>5, what is the probability that a string of 7 zeros and ones has exactly 5
ones. (You may assume all strings of # zeros and ones are equally probable.)

n
There are 2" equally likely strings with 7 zeros and ones. Of these [SJ have exactly

n
5 ones so the probability of exactly 5 ones is (SJ/Zn.



b. [5] For n>5, what is the probability that a string of 7 zeros and ones has exactly 5
ones given that it has at least 4 ones. (You may assume all strings of # zeros and ones are
equally probable.)

nin
There are Z(kj strings of 7 zeros and ones that have at least 4 ones. From part
ka

n ) )
a, we know that there are [5} string with exactly 5 ones - and each has at least 4

ones, so the probability that a string of # zeros and ones has exactly 5 ones given

n nin
that it has at least 4 ones is /Z )
5) &k

5. [15] Prove: If A is a nonempty set, P(A), the power set of A, is not countably infinite.

Suppose there was a set A such that 9(A4) were countably infinite. 4 could not be
finite since then |9(A4)| = 2™ and so 9(A4) would be finite as well. 4 could not be
uncountably infinite since the mapping f : A— 9(A) defined by f(a)={a}
maps A one-to-one into P(A), so by Theorem 10, $(4) must be uncountably infi-
nite. Lastly, suppose A is countably infinite. Let ¢:[] %)A and

h:0 —=~> 9A), then g is invertible so hog™: A—X+— P(4). Define

onto onto
A={acAlaghog™(a)}. Since Ac 9A), let a=(hog™) ™ (A) (thatis a sa-
tisfies hog (@)= A). If @€ A there is a contradiction since then by the defini-
tion of A, @¢ A.Yetif @¢ A then for the same reason @ € A. Thus either way,
there is a contradiction and the assumption that A is countably infinite is false.

Since A cannot be finite, uncountably infinite, or countably infinite, A does not
exist.



6. a. [10] Prove this corollary to Theorem 6:
Given a countably infinite collection of finite sets {A i}z‘e satisfying A, =D and for
1>1,

the union U/I ;15 countably infinite. (In other words, if each set contains at least one ele-
ie

ment not contained in its predecessors, the union cannot be finite.)

Theorem 6 guarantees that UAZ. is countable. For each ie€ll, select

i€l

i1
aeh~ UAJ. . Define f :[J —)UA by f(i)=4q,. For i, #1,, assume without

j=0 ie
ip-1 ip-1
loss of generality that i, <1i,, then f(i))=a, € A < U A but f(i,)=a, ¢ U A,
j=0 j=0

so f(i,)# f(i,) and f is oneto-one. By Theorem 4, UAZ, is infinite and thus
7€l

countably infinite.

7. [10] Prove that if f, g, and 4 are real-valued functions defined on the natural numbers,

then f=0(g) and g=0(h) imply f =o(h).

Since g=0O(4), there exist non-negative constants A and N, such that for all
n>N,,

g(n)| <M |h(n)|. Suppose we are given a positive &. Since f =o0(g)

there exists a non-negative constant N, such that for all n>N,,

| f (n)| < ﬁ |g(n)| But then we have for n>max{N,,N,},

£ (n)] < ﬁ lg(n)|< ﬁ M |h(n)| = £[n(n)]. We conclude that f = o(h).

8. [10] . Prove that if 0 <a <&, then #’ # O (»*)

Suppose 7’ = O (z*) and thus there exist non-negative constants M and N such
1
. We note that since « <&, M P2 exists and is

that for all N> N, n?

nﬂsM

1 1
positive. Choose n = maX{N,lrl\/I b‘a—‘+l}. We then have N> N and n>M?®2 so

n®?>M and |n°|=n°>Mn® =M |n?|. This is a contradiction so 7" # O (x*).



9. [10] Assuming X and Y are integer variables, prove correct with respect to precondi-
tion “ y is defined” and postcondition “X =y ”:

if y > 3 then
X = y+6
if x> 11 then
y:=11
endif
else
X = y-2
y =yl
endif
Y is defined
if y> 3 then
y>3
X = y+6
(y>3)A(x=y+6)
if x <11 then
(y>3YA(Xx=y+6)A(x<1l)
(y>3)A(x=9)
y:=11
(y=1D) A(x=9)
X#Y
endif
(X=Y)v((y>3)A(x=y+6)A(x=11))
(X#£y)v(x=y+6)
X#Y
else
y<3
X =y2
(y<3)Aa(x=y-2)
X=Yy-2
y =yl
(y=y-Dna(x=y-2)
x=y-1
X#Y
endif
(x£y)v(x=y)

XY




10. [10] Prove the following code is partially correct with respect to precondition “true”
and postcondition “X=1" (assume x is an integer variable.):

x=0

while x =0 do
x:=1

endwhile

Be explicit about your loop invariant: I =



11. a. [10] Prove the following code is partially correct with respect to precondition
“n>1 and postcondition “(k/2<n) A(k=n)A(Jj =05k =2)” (assume k and n are
integer variables.):

k=1

while k <n do
k:=2%k

endwhile

Be explicit about your loop invariant: I = (k/2<n) A(3j =05k =2)

n>1

(n=1)A(k =1)
(k/2<n)A(Fj =05k =2))

while k <n do
(k/2<n)/\(3j209k:2j)/\(k<n)
(k<n)/\(3j203k:21)

k =2k
(k'<n)A@Fj=03k'=2)A(k=2k")
(k/2<n)A(Fj=05k =29

endwhile

(k/2<nA(k=n)AEFj=05k=2])

b. [5] Prove that the loop terminates.



12. [10] Assuming max, a, b, and ¢ are integer variable and that a, b, and ¢ are defined,
determine the weakest precondition with respect to the postcondition
“(min=avmin=~4v min=c)A(min<a) A(min <s)A(min<c)”:

if b <a then
{if b < c then
min:=b
else
min = c}
else

{if c < a then
min : = c}



13. a. [10] Determine the weakest precondition with respect to the postcondition “z = 2”
for the following (assume z, y, and x are integer variables). Simplify your answer so that
there are NO logical operators.

x:=3
z:=2"xy
if >0 then

z = 7-2
else

Z:=-z
endif

b. [5] Determine the weakest precondition with respect to the postcondition
“(x = y)A(y=x")" for the following (assume y, and x are integer variables and are de-

fined):



