- 1. The important issue is the logic you used to arrive at your answer.
- 2. Use extra paper to determine your solutions then neatly transcribe them onto these sheets.
- 3. Do not submit the scratch sheets. However, all of the logic necessary to obtain the solution should be on these sheets.
- 4. Comment on all logical flaws and omissions and enclose the comments in boxes
- 1. [10] Let A and B be non-empty sets with cardinalities m and n, respectively. How many functions from A to B are **not** one-to-one? (You may assume $m \le n$.)

For each of the m elements of A there are n choices for the value of the function so there are n^m functions from A to B. To count the one-to-one functions, we notice that there are There are n choices for the value of the function for the first element of A, n-1 choices for the value of the function for the first element of A, ..., and n-m+1 choices for the value of the function for the mth element of A.

Thus, there are $\frac{n!}{(n-m)!}$ one-to-one functions from A to B. There are

 $n^m - \frac{n!}{(n-m)!}$ functions from A to B that are not one-to-one.

- **2.** Consider choosing k objects from a set $\{a_1, a_2, ..., a_n\}$ of n objects with order unimportant but repetition allowed.
- a. [5] How many such selections have exactly one a_1 ?

We need to determine how many ways we have of choosing k-1 objects from a set of the set $\{a_2,...,a_n\}$ of n-1 objects with order unimportant but repetition allowed. This is equivalent to placing k-1 balls in n-1 bins and there are

$$\binom{(n-1)+(k-1)-1}{k-1} = \binom{n+k-3}{k-1}$$

ways of doing it.

[5] How many such selections have at least a_1 ?

Since the total number of ways of choosing k objects from a set $\left\{a_1, a_2, ..., a_n\right\}$ of n objects with order unimportant but repetition allowed is $\binom{n+k-1}{k}$ and there are $\binom{(n-1)+k-1}{k} = \binom{n+k-2}{k}$ ways of choosing k objects from the set $\left\{a_2, ..., a_n\right\}$ of n objects with order unimportant but repetition allowed, there are $\binom{n+k-1}{k} - \binom{n+k-2}{k}$ such selections having at least one a_1 . Alternatively, you could see this as choosing a_1 once then choosing k-1 objects from the set $\left\{a_1, a_2, ..., a_n\right\}$. This way you get $\binom{n+k-2}{k-1}$ which equals $\binom{n+k-1}{k} - \binom{n+k-2}{k}$.

3. a. [10] Using a combinatorial argument, prove that for $n \ge 1$:

$$3^n = \sum_{k=0}^n \binom{n}{k} 2^k$$

We seek to determine how many strings of length n there are consisting of elements of $\{a,b,c\}$ allowing repetition. Since there are three choices for each of the n positions there are 3^n such strings. Alternatively, let k denote the number of positions in the string occupied by a or b. The value of k varies from 0 to n. For a fixed value of k, there are $\binom{n}{k}$ ways to select these positions and then 2 options for each of the k positions, thus $\binom{n}{k}2^k$ for the fixed value of k and $\sum_{k=0}^n \binom{n}{k}2^k$ overall. This must equal 3^n .

b. [10] Using a combinatorial argument, prove that for $m, n, p \ge 1$:

$$\binom{m+n+p}{m}\binom{n+p}{n} = \binom{m+n+p}{p}\binom{m+n}{n}.$$

Given a set S of cardinality m+n+p, consider how many partitions there are of S into disjoint subsets A, B, and C of cardinalities m, n, and p, respectively. For the left side of the equality, we count this by first selecting the m elements for the subset A in $\binom{m+n+p}{m}$ ways and then selecting the n elements for the subset B from the remainder in $\binom{n+p}{n}$ ways. The remaining elements form the subset C. For the right side of the equality, we count this by first selecting the p elements for the subset C in $\binom{m+n+p}{p}$ ways and then selecting the C in the subset C in the remainder in C ways. The remaining elements form the subset C in the subset C in the remainder in C ways. The remaining elements form the subset C in the subset C in the subset C in the subset C in the remainder in C ways. The remaining elements form the subset C in the subs

4. a. [5] Suppose k objects are being chosen from a set $\{a_1, a_2, ..., a_n\}$ of n objects with order unimportant and repetition not allowed. Suppose all such selections are equally likely. What is the probability that a selection contains exactly two of $\{a_1, a_2, a_3\}$? (You may assume $n \ge k + 1 \ge 3$.)

There are $\binom{n}{k}$ equally likely selections of k objects from n objects with order unimportant and repetition not allowed. If exactly two of $\{a_1, a_2, a_3\}$ are chosen there are $\binom{3}{2}$ ways to select the two from $\{a_1, a_2, a_3\}$ and then $\binom{n-3}{k-2}$ ways to choose the remaining k-2 from the n-3 elements $\{a_4, a_5, ..., a_n\}$. So there are $\binom{3}{2}\binom{n-3}{k-2}$ selections containing exactly two of $\{a_1, a_2, a_3\}$ and the probability of such a selection is $\frac{\binom{3}{2}\binom{n-3}{k-2}}{\binom{n}{k}}$

b. [5] Now suppose k objects are being chosen from a set $\{a_1, a_2, ..., a_n\}$ of n objects with order **important** and repetition still **not** allowed. Suppose all such selections are equally likely. What is the probability that a selection contains **exactly two** of $\{a_1, a_2, a_3\}$?

There are $\frac{n!}{(n-k)!}$ equally likely selections of k objects from n objects with order important and repetition not allowed. If exactly two of $\{a_1,a_2,a_3\}$ are chosen there are $\binom{3}{2}$ ways to select the two from $\{a_1,a_2,a_3\}$ and then $\binom{n-3}{k-2}$ ways to choose the remaining k-2 from the n-3 elements $\{a_4,a_5,...,a_n\}$. Then there are k! ways to permute the elements selected. Thus, there are $\binom{3}{2}\binom{n-3}{k-2}k!$ selections containing exactly two of $\{a_1,a_2,a_3\}$ and the probability of such a selection is $\frac{\binom{3}{2}\binom{n-3}{k-2}k!}{\binom{n-3}{k-2}}k!$. (Alternatively, we could recognize that this is the same as part a. since, if orser is imposed, there are k! ways of permuting the selections with ex-

since, if orser is imposed, there are k! ways of permuting the selections with exactly two of $\{a_1, a_2, a_3\}$ but also k! ways of permuting all of the selections.)

5. [10] Using Definition 2' but no cardinality theorems, prove that the set $P = \{infinitely long strings of 0s and 1s with exactly two 1s\}$ is infinite.

Consider the function $f: P \to P$ defined by $f(s) = 0 \parallel s$ for any string $s \in P$ (where \parallel denotes concatenation). Notice that if s has exactly two 1s, then so will f(s). The function f is one-to-one since if $s, t \in P$ and $s \neq t$, then $f(s) = 0 \parallel s \neq 0 \parallel t = f(t)$. Lastly, notice that since no string maps to < 110000...>, f maps P into a proper subset of P. We conclude that P is infinite.

6. [10] Let A be a countably infinite set, B be an uncountably infinite set nonempty set and $C = A \times B$. Is the C finite, countably infinite, or uncountably infinite? Prove your assertion.

The set C is uncountably infinite. Since A is countably infinite, it is non-empty. Let a be any element of A. Consider the function $f:B\to C$ defined as f(b)=(a,b). The function f is one-to-one since if $b_1,b_2\in B$ and $b_1\neq b_2$, then $f(b_1)=(a,b_1)\neq (a,b_2)=f(b_2)$. By Theorem 11, C is uncountably infinite.

7. [10] Given that for $n \ge 1$ and $\alpha > 0, (1+\alpha)^n \ge 1 + n\alpha$, prove that $n \cdot 2^n = O(3^n)$.

Let
$$M = \frac{1}{2}$$
 and $N = 1$. For $n \ge 1$, $(\frac{3}{2})^n = (1 + \frac{1}{2})^n \ge 1 + \frac{n}{2} \ge \frac{n}{2}$. Thus, for $n \ge 1$, $2 \cdot 3^n \ge n \cdot 2^n$. So then for $n \ge N$, $|n \cdot 2^n| = n \cdot 2^n \le 2 \cdot 3^n = M |3^n|$.

8. [10] Prove that if $f_1 = O(g_1)$ and $f_2 = o(g_2)$, then $f_1 f_2 = o(g_1 g_2)$.

Since
$$f_1 = O(g_1)$$
, there exist M and N_1 so that for $n \ge N_1$, $|f_1(n)| \le M |g_1(n)|$.
Since $f_2 = o(g_2)$, given $\varepsilon > 0$ then also $\frac{\varepsilon}{M} > 0$ and there exists N_2 so that for $n \ge N_2$, $|f_2(n)| \le \frac{\varepsilon}{M} |g_2(n)|$, thus for $n \ge \max\{N_1, N_2\}$, $|f_1(n)f_2(n)| \le M |g_1(n)| \frac{\varepsilon}{M} |g_2(n)| = \varepsilon |g_1(n)g_2(n)|$, so $f_1 f_2 = o(g_1 g_2)$.

9. [10] Assuming x and y are integer variables, prove correct with respect to precondition "y is defined" and postcondition "x > 0":

```
if y > 0 then
      x := 2*y
      if x > 5 then
            x := x-4
      endif
else
      x := 4-y
      y := y-1
      if y = -3 then
            x := x-3
      endif
endif
          y is defined
if y > 0 then ______ y > 0
      x := 2^*y _____ y > 0 \land x = 2y
                x > 0
      if x > 5 then____ x > 11
            x := x-4____(x' > 5) \land (x = x'-4)
      endif _____ x > 1
(x > 0) \lor (x > 1)
x := 4-y (y \le 0) \land (x = 4 - y)
      y := y-1 x > 3 x > 3
      if y = -3 then____ x > 3
x : = x-3____ (x' > 3) \land (x = x' - 3)
      endif x > 0
(x > 3) \lor (x > 0)
```

endif x > 0 $(x > 0) \lor (x > 0)$

x > 0

10. [10] Prove the following code is partially correct with respect to precondition "true" and postcondition "k is even". (Assume k, n, and i are integer variables and that n and i are defined at input.)

```
\begin{array}{l} k:=1234\\ \textbf{while}\ i\leq=n\ \textbf{do}\\ &\textbf{if}\ i\geq 7\ \textbf{then}\\ &k:=k\text{-}12\\ &\textbf{else}\\ &k:=4\text{*}k\text{-}6\\ &\textbf{endif}\\ &\textbf{i}:=\textbf{i+}5\\ &\textbf{endwhile} \end{array}
```

Be explicit about your loop invariant: I = "k is even"

		true
k := 1234		k = 1234
		k is even
while i ≤= n do		$(k \text{ is even}) \land (i \leq n)$
		k is even
if $i \geq 7$ then		$(k \text{ is even}) \land (i \ge 7)$
		k is even
	k : = k-12	$(k' \text{ is even}) \wedge (k = k'-12)$
		k is even
else		$(k \text{ is even}) \land (i < 7)$
		k is even
		$\underline{\hspace{1cm}}(k' \text{ is even}) \wedge (k = 4k' - 6)$
		k is even
endif		$(k \text{ is even}) \vee (k \text{ is even})$
		k is even
i := i+5		$(k \text{ is even}) \land (i' = i + 5)$
		k is even
endwhile		$(k \text{ is even}) \land (i > n)$
		k is even

11. [10] Prove that the code below terminates. (Assume S and i are integer variables.):

```
s := 0
i := 1
while i \le = 100000 do
s := s+i
i := 4*i+2
endwhile
```

First we recognize that if the quantity 100,000-i becomes negative, the loop will terminate. We will show that that quantity strictly decreases but to that end we need to guarantee that the variable i stays positive. Consider the invariant " $i \ge 1$ ":

The quantity 100,000-i strictly decreases through the loop. Since this is an integer expression, eventually 100,000-i becomes negative and the loop terminates.

12. [10] Determine the weakest precondition with respect to the postcondition "S = 0" for the following (assume S, y, and x are integer variables and y and x are defined

```
if x \neq 0 then x := y S := x-y else S := y+x endif p(x \neq 0) = y then p(x \neq
```

13. [10] Determine the weakest precondition with respect to the postcondition " $x \neq y$ " for the following (assume y and x are integer variables and x is defined). Simplify your answer so that there are NO logical operators.

```
if x \ge 3 then

y:= 2

else

if x = 2 then

y:= 6

else

y:= x+1

endif
```

We consider the inner if-then-else first:

```
wp (if x = 2 then y := 6 else y := x+1 endif, x \neq y)

= ((x = 2) \land wp(y := 6, x \neq y)) \lor ((x \neq 2) \land wp(y := x+1, x \neq y))

= ((x = 2) \land (x \neq 6)) \lor ((x \neq 2) \land (x \neq x+1))

= ((x = 2) \lor (x \neq 2)

= true
```

Now, letting S denote "if x = 2 then y := 6 else y := x+1 endif",

```
wp (if x \ge 3 then y:= 2 else S endif, x \ne y)

= ((x \ge 3) \land wp(y := 2, x \ne y)) \lor ((x < 3) \land wp(S, x \ne y))

= ((x \ge 3) \land (x \ne 2)) \lor ((x < 3) \land true)

= ((x \ge 3) \lor (x < 3))

= true
```

So, wp (if $x \ge 3$ then y:= 2 else if x = 2 then y := 6 else y := x+1 endif endif, $x \ne y$) = true.