
Combinatorial Arguments 
 
These are not algebraic arguments. There may be a tiny bit of algebra involved but in 
general the entirety of the argument hangs on combinatorics. 
 
The format for the proof is this:  
 
 a. Present a model (i.e. a combinatorial problem). "How many  subsets ...?", "how 
many strings ...?", whatever. 
 
 b. Solve the problem with an answer that looks like the left hand side of the 
equation. 
 
 c. Solve the problem with an answer that looks like the right hand side of the 
equation. 
 
Since the problem has only one solution, the right side must equal the left side. 
 
The way to figure out the model is to stare at both sides and see if one side suggests itself as 
the count of something. When you see products and powers, you know that suggest 
independent options. When you see sums, you know that suggests either/or type of cases. 
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How I figured it out: I see the  and immediately think that there are 2 options on each of 
n choices. Like maybe having a bit string of length n since for each position there is the 
option of having a 0 or a 1. I look at the left hand side and see the summation. That suggest 
cases - and the cases are indexed by the variable k. Lastly k takes on all values from 0 
through n. So how could I bust the bit string problem into such cases? Idea: let k be the 

number of 1's present in the bit string. There are n positions in the string and  ways to 

select the k positions holding 1's, so this fits. 
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That was the thinking. Here is the 
 
Proof: Consider a model of strings of length n containing either 0's or 1's. Since for each of 
the n positions, there are two options - and the options are independent, there are  such 
strings. This agrees with the right hand side. To argue the left hand side, let k be the number 
of 1's in such a string. The number of 1's varies from 0 through n and for a fixed number k 

of 1's there are   ways to position the 1's. Thus the summation from  must equal 
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Here's my thinking: The left hand side makes the model pretty obvious - we are choosing 
k+1 objects from n+1 without repetition and without concern for order. The "+1" 's 
hanging around suggest we might want to break the set of n+1 into two subsets: one of size 
n and a singleton. But that's just a suggestion and we should stare at the other side to see 
what it looks like. The + sign should say to us "cases" and thus there should be two cases: 
one in which k is being chosen from n and another case where k+1 is being taken from n. 
OK, we draw a little picture with a big circle representing a set of n objects and a little circle 
beside it representing just one object. We see that to choose k+1 objects from the union we 
must EITHER choose the little guy OR not. If we choose the little guy, then we have k to 

choose from the big set (thus we get  options). On the other hand, if we do not choose 

the little guy, we must choose all k+1 from the big set of n (thus 
 ). 
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That's the thinking - and does not go into your 
 
Proof: Let A be a set of size n and b be an element not contained in A. Let C . 
How many subsets of C have exactly k+1 elements? Since C has cardinality n+1, there are 

 such subsets.  This agrees with the left hand side.  For the right hand side, consider 

that a subset must either contain b or not (and not both). If the subset contains b, then there 

are k remaining elements of the subset to be selected from A. There are  ways to do 

that. If the subset does not contain b, then all k+1 elements must be selected from A. There 

are  ways to do that, thus there are  total ways and this must 

equal 
 .  
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