
Asymptotic Dominance Problems 
 

1.  Display a function f N R: →  that is Ο( )1  but is not constant. 
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 is not constant but for n f n≥ ≤ ⋅0 11, | ( )| | | . 

 
2.  Define the relation "≤ " on functions from N into R by f g≤  if and only if f g= Ο( ) .  
Prove that ≤  is reflexive and transitive. (Recall: to be reflexive, you must 
 

To prove reflexivity, notice that for any f N R: →  and all n ≥ 0 , f n f n( ) ( )≤ ⋅1 . 
 
To prove transitivity, suppose f g= Ο( )  and g h= Ο( ) , then by definition, there 
exist N M N Mf f g g≥ ≥ ≥ ≥0 0 0 0, , , , so that for n N f≥ , f n M g nf( ) ( )≤  and 
for n Ng≥ , g n M h ng( ) ( )≤ .  Thus for n N Nf g≥ max{ , } , f n M M h nf g( ) ( )≤ . 
We may conclude that f h= Ο( ) . 
 

3. Suppose )(gf Ο=  and )(hg Ο= , prove or disprove (with a simple counter-example) 
that )(hf Ο= . 
 

Suppose f g= Ο( )  and g h= Ο( ) , then by definition, there exist 
N M N Mf f g g≥ ≥ ≥ ≥0 0 0 0, , , , so that for n N f≥ , f n M g nf( ) ( )≤  and for 
n Ng≥ , g n M h ng( ) ( )≤ .  Thus for n N Nf g≥ max{ , } , f n M M h nf g( ) ( )≤ . We 
may conclude that f h= Ο( ) . 

 
4. Suppose f g= ο( )  and g h= Ο( ) .  Prove that f h= ο( ) . 

 
Since ),(hg Ο=  there exist 1M  and 1N  so that |)(||)(| 11 nhMngNn ≤⇒≥ . Given 

,0>ε  let 1/Mεε =′ . Since  )(gf ο= , there exist 2N  such that 
|)(|/|)(||)(| 12 ngMngnfNn εε =′≤⇒≥ . Thus letting },max{ 21 NNN = , for 

Nn ≥  we have |)(||)(|/|)(| nhngMnf εε ≤≤  so )(hf ο= . 
 
5. Suppose f g= Ο( )  and g h= Ο( ) .  If h f= Ο( ) , prove that h g= Ο( ) . 
 

By definition, there exist N M N Mf f h h≥ ≥ ≥ ≥0 0 0 0, , , , so that for n N f≥ , 
f n M g nf( ) ( )≤  and for n Nh≥ , h n M f nh( ) ( )≤ .  Thus for n N Nf h≥ max{ , } , 
h n M M g nf h( ) ( )≤ . We may conclude that h g= Ο( ) . 

 



6. Using Theorem 2 and induction prove that if for i k= 1 2, , ..., , f gi i= Ο( ) , then 
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Ο( )  and f gk k+ +=1 1Ο( ) , Theorem 2 
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7. Employing induction and Theorem 3, prove that if for i k= 1 2, , ..., , f gi = Ο( ) , then 
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8. Show that if f n n( )= +12 3  and g n n( )= 2 , then f = O(g). 
 

Let 3=N  and 13=M . For Nn ≥ : 
.|)(|||13131312312|312||)(| 22 ngMnnnnnnnnf ==≤=+≤+=+=  

Thus f = O(g). 
 

9. Define f N R: →  by f n
for n

n for n
( ) =

=
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. Prove that f n= Ο( ) . 

 
For n ≥ 18 , f n n n( ) = ≤ ⋅1 , so f n= Ο( ) . 

 



10.  Consider the functions f and g defined on N by f n
n for n even
n for n odd

( ) =




2

2
 and 

g n n( ) .= 2   Show that f g= Ο( )  but that f g≠ ο( )  and g f≠ Ο( ).  
 

f g= Ο( ) : Since for n ≥ 0 , 2 2 2n n≤ ; we have that 2 2 2n n≤  and n n2 22≤ , 

so f n g n( ) ( )≤ 2 . Thus f g= Ο( ) . 
 
f g≠ ο( ) : Suppose f g= ο( ) , then for ε = 1 2/  there is a non-negative N so that for 

all n N≥ , f n g n( ) ( )≤ ε . But letting n = 2 if N = 0 and n = N or N+1 

(whichever is even) if N is positive, we have f n n n g n( ) ( )= > =2 21
2

ε . This is a 

contradiction, so f g≠ ο( )  
 
g f≠ Ο( ). : Suppose g f= Ο( ). , then there exist nonnegative M and N so that for all 
n N≥ , g n M f n( ) ( )≤ . But letting n be odd and greater than N and 2M, then we 
have g n n n n Mn M n M f n( ) ( )= = ⋅ > = =2 2 2 . This is a contradiction, so 
g f≠ Ο( ).  
 

11. Show that 2n n= Ο( !) . 
 

For n ≥ 2  and i n= 2 3, , ..., , we have 2 ≤ i , thus 2
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2n n= Ο( !) . 
 
12. Show that for any real value of a, a nn = Ο( !) . (Hint: be careful to consider negative 
values of a.) 
 

Define  K a=  (i.e. K is the first integer greater than or equal to a  ). For 

n K≥  and i K K n= +, , ...,1 , we have a i≤ , thus a i
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1 ! . So with 

M a K= −1  and N K= , we have a M nn ≤ ⋅ !  for all n N≥ . Thus a nn = Ο( !) . 
 



13. Show that for any b > 1, log ( )b n n=ο  
 

Consider any positive ε , and choose N
b
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By taking base b logarithms, we have 
ε ε εn n b n nb

n
b b= = > =log log log .  

 
14. Prove that if 0 ≤ <a b , then a bn n= ο ( )  
 

If a = 0 , then for all ε > 0  and all n ≥ 1 , we have a bn n= ≤0 ε . Assume now 
that a > 0 . Take N a b= ln( ) / ln( / )ε  and (assuming ε < 1 ), for n N≥ , 
n a b⋅ ≤ln( / ) ln( )ε  and a a b bn n n n= ≤ ⋅ =ε ε . (If ε ≥ 1  then 

a a b b bn n n n n= ≤ ⋅ ≤ ⋅ =ε ε  for n ≥ 0 .) Thus a bn n= ο ( ) . 
 
15. Prove that if 0 ≤ <a b , then n na b= ο ( )  
 

Given any ε > 0 , let N b a= −( / ) /( )1 1ε . Notice then for n N b a≥ = −( / ) /( )1 1ε , 
nb a− ≥ 1 / ε , and n b a− − ≤( ) ε . So n n n n n na b a b b a b b= = ≤− − − −( ) ( ) ε . Therefore, 

n na b= ο ( ) . 
 

16. Prove that if 0 < <a b , then b an n≠ Ο( ) . 
 

Given M ≥ 0  and N ≥ 0 , let M M= max{ , }1  thus M M≥  and ln( )M ≥ 0 . Notice 

that ln( )b
a

> 0  and choose n N M
b
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thus n b
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Mln( ) ln( )>  and ( )b
a

M Mn > ≥ .  But then b b M a M an n n n= > =  so 

b an n≠ Ο( )  
 



17. Prove that n n= Ο ( )2 . 
 
Let 1=M  and 1=N . For 1, 2/3 ≥≥ nNn . Thus ||1|| 222/3 nnnnnn ==≤= , so 

).( 2nn Ο=  
 
18. Prove that e en n( ) ( )

2

≠ ο . 
 
Let ,1=ε  consider and N , and choose }.2,max{Nn ≥  Since 2≥n , nnn >≥ 22  and 

||||
2

nee nn ε=>  so ).()( 2 nn ee ο≠  
 

19. Using only Definition 1, prove that ).(3 5.44 nn Ο=  
 

Let 3=M  and 1=N . For ,1=≥ Nn  we have 1≥n , so ≤|3| 4n  3 .||3 5.44 nnn =  
Thus ).(3 5.44 nn Ο=  

 
20. Using only Definition 2, prove that ).42(5 nn ⋅≠ ο  
 

Let 4/1=ε  and suppose there exists N  so that for all Nn ≥ , .|42||5| nn ⋅≤ ε  But for 

 },,1max{ Nn =  we have Nn ≥  and 1≥n , so 1)
4
5( >n  and nn 45 > , thus 

|42||42|2/145|5| nnnnn ⋅=⋅=>= ε  and ).42(5 nn ⋅≠ ο  
 
21. Show that if f n n( )= 2  and g n n( )= , then f ≠  o(g). 
 

Let 1=ε  and consider any positive N. Let 1+= Nn  so 2≥n and Nn ≥ . We have: 
.|)(|||||2|||||||)(| 2 ngnnnnnnf εε =>≥⋅==  

Thus f ≠  o(g). 
 
22. Show that 2 2log ! ( log )n n n= Ο  and 2 2log (log !)n n n= Ο . 
 

For n ≥ 1 , we have log ! log ( ) log log2 2
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|log !| | log |2 1n n n≤ ⋅  and log ! ( log )2 2n n n= Ο . To show 2 2log (log !)n n n= Ο  let 
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By taking logs, we have for 8n ≥ , 2 2 2 2| log | log 3 log ! 3|log !|n n n n n n= ≤ = . 
 

 


