Cardinality Theory

Definition 1: A set A is finite with cardinality n if it is empty or if there exists a one-to-one function mapping $\{1,2, \ldots, n\}$ onto A. A set is infinite if it is not finite.

Definition 2: A set A is infinite if there exists a one-to-one function mapping A onto a proper subset of A. A set is finite if it is not infinite.

Definition 2': A set A is infinite if there exists a one-to-one function mapping A into a proper subset of A. A set is finite if it is not infinite.

Theorem 1: The set N of natural numbers is infinite.
Theorem 2: The real interval $[0,1]$ is infinite.
Theorem 3: A superset of an infinite set is infinite.
Corollary: A subset of a finite set is finite.
Theorem 4: Let A be infinite and $f: A \xrightarrow{1-1} B$, then B is infinite.
Definition 3: A set A is countably infinite if there exists a one-to-one function mapping N onto A. A set is countable if it is finite or countably infinite. A set is uncountably infinite if it is not countable.

Theorem 5: The real interval $[0,1]$ is uncountably infinite.
Theorem 6: The set of infinitely long bit strings is uncountably infinite.
Theorem 7: If there exists a function $f: \mathrm{N} \xrightarrow[\text { onto }]{ } A$ then A is countable.
Theorem 8: A subset of a countable set is countable.
Corollary 8.1: A superset of an uncountably infinite set is uncountably infinite.
Theorem 9: The union of a finite collection of finite sets is finite.
Theorem 10: The union of a countably infinite collection of finite sets is countable.
Theorem 11: The union of a countably infinite collection of countably infinite sets is countably infinite.
Corollary 11.1: The union of a finite collection of countably infinite sets is countably infinite.
Corollary 11.2: The union of a countable collection of countably infinite sets is countably infinite.
Corollary 11.3: If the set A is countably infinite and the set B is countable then the Cartesian product $A \times B$ is countably infinite.

Theorem 12: Let A be uncountably infinite and $f: A \xrightarrow{1-1} B$, then B is uncountably infinite.

