Cardinality Theory

Definition 1: A set A is *finite* with cardinality n if it is empty or if there exists a one-to-one function mapping $\{1, 2, ..., n\}$ onto A. A set is *infinite* if it is not finite.

Definition 2: A set *A* is *infinite* if there exists a one-to-one function mapping *A* onto a proper subset of *A*. A set is *finite* if it is not infinite.

Definition 2': A set *A* is *infinite* if there exists a one-to-one function mapping *A* into a proper subset of *A*. A set is *finite* if it is not infinite.

Theorem 1: The set N of natural numbers is infinite.

Theorem 2: *The real interval* [0,1] *is infinite.*

Theorem 3: A superset of an infinite set is infinite.

Corollary: A subset of a finite set is finite.

Theorem 4: Let A be infinite and $f: A \xrightarrow{1-1} B$, then B is infinite.

Definition 3: A set *A* is *countably infinite* if there exists a one-to-one function mapping N onto *A*. A set is *countable* if it is finite or countably infinite. A set is *uncountably infinite* if it is not countable.

Theorem 5: *The real interval* [0,1] *is uncountably infinite.*

Theorem 6: The set of infinitely long bit strings is uncountably infinite.

Theorem 7: If there exists a function $f: \mathbb{N} \longrightarrow A$ then A is countable.

Theorem 8: A subset of a countable set is countable.

Corollary 8.1: A superset of an uncountably infinite set is uncountably infinite.

Theorem 9: The union of a finite collection of finite sets is finite.

Theorem 10: The union of a countably infinite collection of finite sets is countable.

Theorem 11: The union of a countably infinite collection of countably infinite sets is countably infinite.

Corollary 11.1: The union of a finite collection of countably infinite sets is countably infinite.

Corollary 11.2: The union of a countable collection of countably infinite sets is countably infinite.

Corollary 11.3: If the set A is countably infinite and the set B is countable then the Cartesian product $A \times B$ is countably infinite.

Theorem 12: Let A be uncountably infinite and $f: A \xrightarrow{1-1} B$, then B is uncountably infinite.