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Although by name the theory of set cardinality may seem to be an offshoot of 
combinatorics, the central interest is actually infinite sets. Combinatorics deals with finite 
sets.  As will be seen, the tool employed for the majority of the theory is establishing one-
to-one correspondences1 between sets. 
 
One version of cardinality theory uses “cardinal numbers” - a type of number used to 
quantify cardinalities.  We will not use cardinal numbers here although the results are quite 
similar. 
 
The initial definition of finiteness says no more than a set is finite if we can “count” its 
elements.  Counting means establishing a one-to-one correspondence with a set of 

consecutive integers beginning with one.  Thus, if f is a function mapping {1,2,..., }n  one-

to-one onto a set A, we “count” A as (1), (2),..., ( )f f f n .  The fact that  f is one-to-one 

and onto ensures that each element of A is counted (onto-ness) and that no element is 
counted more than once (one-to-one-ness).  
 
Definition 1: A set A is finite with cardinality n  if it is empty or if there exists a one-to-one 

function mapping },...,2,1{ n  onto A.  A set is infinite if it is not finite. 

 
Thus, since the set of lower case Latin characters {a, b, c, …, z} can be put into one-to-one  

correspondence with }26,...,2,1{ , that set is finite.  Let’s prove that the set of natural 

numbers ,...}2,1,0{  is infinite.  Notice to do this we must show that for any n , no 

function exists mapping },...,2,1{ n  one-to-one onto  .  (It is not sufficient to show that 

some function doesn’t work – we must establish that it is impossible to have such a 
function).  As one might expect, such arguments use proof-by-contradiction. 
 
Example 1: The set of natural numbers is infinite. 
 

Proof: Suppose there exists an n and a function f mapping },...,2,1{ n one-to-one onto  .  

The set )}(),...,2(),1({ nfff  is finite so it has a maximum element. Let 

)}(),...,2(),1(max{1 nfffm  .  Since m  and f is onto, there must exist some 

},...,2,1{ nk  such that .)( mkf   But then also )}(),...,2(),1({)( nfffkf   and we 

would have that mkfkfnfffm  )()(1)}(),...,2(),1(max{1 , which is a 

contradiction.  We conclude that no such n and f exists, so   is infinite.  
 
That wasn’t hard but it wasn’t much fun either.  It might be nice to have a more direct 
method for proving a set is infinite.  Such is provided by this alternative definition.   
 

                                                
1 A “one-to-one correspondence” between sets A and B implies that there is a one-to-one function mapping 
A onto B (and thus another function, the inverse of the first, mapping B onto A).   



Definition 2: A set A is infinite if there exists a one-to-one function mapping A onto a 
proper subset of A.  A set is finite if it is not infinite. 
 
Whenever we see two definitions for the same concept, we should ask “are they logically 
identical”.  The answer this time is “not quite”.  Let me deal with the easy part of the 
comparison of the two definitions first and then I’ll discuss the tricky stuff. 
 
It is a simple matter to show that if a set is finite according to Definition 1 then it must be 
finite under Definition 2.  (If a set were finite according to Definition 1 but infinite under 
Definition 2, we would end up with a one-to-one correspondence between two finite sets of 
different cardinalities.  That can’t happen.)  By using the contrapositive to this, we see that if 
a set is infinite according to Definition 2 then it must be infinite under Definition 1.  This is 
good because, since we will want to use Definition 1 for finite sets and Definition 2 for 
infinite sets, we know that we are using the “stronger” definitions (i.e., the claims will hold 
for either definition). 
 
Turning now to the thornier question of implication in the other direction, the answer is 
that with the standard axioms of set theory2, one cannot prove that a set infinite under 
Definition 1 must also be infinite under Definition 2.  In order to establish the implication 
we add the famous Axiom of Choice (loosely stated as “Given any collection of nonempty 
sets, we can choose a member from each set in that collection”.).  The Axiom of Choice 
allows us to construct the function that Definition 2 requires3.       
 
To see the ease of using Definition 2 for infiniteness, let’s reprove that the set of natural 
numbers is infinite using Definition 2 instead of 1. 
 
Example 2: The set of natural numbers is infinite. 
 

Proof: Let   denote the set of positive natural numbers and consider the function 
:f  defined by 1)(  nnf . (This is often called the “successor function”.)  

Since for mn  , )(11)( mfmnnf  , and f is one-to-one.  But f is also onto since 

for any n , 1n  and .)1( nnf   Because   but  ~0 ,   is a 

proper subset of  .  
 
Notice that since the definition requires that the set be put into one-to-one correspondence 
with a proper subset, we must prove that the function is both one-to-one and onto.  The 
following lemma will allow us to cut some of the work.  It says that a one-to-one function is 
also onto - and thus invertible - if its range is restricted to exactly the image of its domain.  
 

                                                
2 By "standard axioms of set theory", I am referring to Zermelo Fraenkel set theory (see J.M. Henle. An 
Outline of Set Theory. Springer Verlag, 1986).  
 
3 Without getting too deeply into Gödel Consistency Theory, I’ll add that, although the Axiom of Choice is 
not derivable from the standard set theoretic axioms, if those other axioms are consistent then the Axiom of 
Choice is consistent with them.  Lastly, one should not feel covered in shame because we use the Axiom of 
Choice.  Mathematicians do it all of the time without blinking.  It does have some interesting consequences 
however, such that a line segment 1 inch long can be cut into a finite number of pieces and then glued back 
together to form a segment one light-year long. 



Lemma:  If f A B:
1 1

   then f  maps A  one-to-one onto B ( )f A  and thus is 

invertable. 
 

 
 
Consider now Definition 2 but omit the necessity for the function to be onto:  
 
Definition 2': A set A is infinite if there exists a one-to-one function mapping A into a 
proper subset of A. A set is finite if it is not infinite. 
 
Obviously if a set is infinite under Definition 2 it will be infinite under definition 2'.  From 
the lemma, however, the opposite is also true.  To see this, suppose A is infinite under 
Definition 2' and so a function f mapping A into a proper subset A' of A. exists.  Let 

( )A f A and notice that 'A A  so A  must also be a proper subset of A.  We conclude 

that A is also infinite under Definition 2.  By using the contrapositive we may show that 
Definitions 2 and 2' for finite sets are also equivalent. 
 
Since Definition 2' saves some work, we will use it.  More generally we will use Definition 2' 
for infinite sets and Definition 1 for finite sets. 
 
The set of natural numbers has been proved to be infinite using both Definition 1 and 
Definition 2.  The proof using Definition 2' is the same as that using Definition 2 except 
that the second to last sentence (showing that the mapping is onto) could be eliminated. We 

state it as our first theorem and then prove the real interval [0,1]  also is infinite..  

 
Theorem 1:  The set N of natural numbers is infinite. 
 

Theorem 2:  The real interval [0,1]  is infinite. 

 

Proof:  Consider the function ( ) / 2f x x  defined on [0,1] . Clearly f maps the interval into 

[0,1/ 2] , a proper subset of [[0,1] . Since for x y , ( ) / 2 / 2 ( )f x x y f y   , f is one-to-

one. Thus [0,1]  is infinite. 

 
The substance of the next theorem may seem obvious: if a set is infinite and has additional 
elements added, it still is infinite.  
 
Theorem 3:  A superset of an infinite set is infinite. 
 

Proof:  Let A  be an infinite set and assume ˆA A . We seek to show that Â  is infinite as 

well.  By Definition 2', we know there exists an 1 1: 'f A A  for some 'A A . (We will 



use the symbol   to indicate proper subsets.). Define a new function g , an "extension" of 

f to all of Â , as follows 
( )

( )
ˆ ~

if a Af a
g a

a if a A A


 


 . First we must show that g  is one-

to-one on Â .  To that end, consider distinct elements 1 2
ˆ,a a A . Either 1 2,a a A , 

1 2
ˆ, ~a a A A , or one element is in each of A  and ˆ ~A A  (and, without loss of generality, 

we assume 1a A  and 2
ˆ ~a A A ). If 1 2,a a A , then 1 1 2 2( ) ( ) ( ) ( )g a f a f a g a   , 

since f  is one-to-one.  If 1 2
ˆ, ~a a A A , then 1 1 2 2( ) ( )g a a a g a   .  Finally, if 1a A  

and 2
ˆ ~a A A , then 1 1( ) ( ) 'g a f a A  , so 1( )g a A , but 2 2

ˆ( ) ~g a a A A  . Since 

1( )g a A  and 2
ˆ( ) ~g a A A , 1 2( ) ( )g a g a . We have shown that g  is one-to-one.  

Finally, since 'A A , there exists some element ~ 'a A A .  We want to show that for no 

ˆa A  is ( )g a a . To that end, suppose ( )g a a .  If a A , then ( ) ( ) 'g a f a A  , so 

( )g a a .  If ˆ ~a A A , then ˆ( ) ~g a a A A  , so ( )g a a . We have a contradiction in 

either case, so we know there exists no ˆa A  so that ( )g a a .  We conclude that g  maps 

Â  into a proper subset of itself and thus Â  is infinite. 
 

 
 

An easy corollary follows from the fact that if A  is a subset of Â , then Â  is a superset of 

A . If Â  were finite yet A  infinite, we would have a contradiction of the theorem.  So, if Â  

is finite so must A  be finite as well. 
 
 Corollary:  A subset of a finite set is finite. 
 
We use Theorem three to show that it is easy to establish that a very strange set is infinite 
by showing that it has an infinite subset. 
 
Example 3: The set of ratios of integers to odd numbers is infinite. 
 
Proof: All natural numbers can be expressed as ratios of themselves to 1.  Thus the set of 
natural numbers is a subset of this set.  The  set of natural numbers is infinite, therefore this 

set is infinite. 
 
The next theorem emphasizes that infinite cardinality is preserved by one-to-one mappings. 
 

Theorem 4:  Let A be infinite and f A B:
1 1

  , then B is infinite. 

 



Proof:  Let A  be an infinite set and f A B:
1 1

  . If we set ' ( )B f A , then from the 

lemma above f  maps A  one-to-one onto 'B .  The idea of the proof is to show that 'B  is 

infinite.  Since B  is a superset of 'B , Theorem 3 will guarantee that B  is infinite as well. 

We know that since A  is infinite there is some function g  mapping A  one-to-one into 

some proper subset 'A  of itself.  Furthermore, since 1 1: '
onto

f A B , we have 

1 11 : '
onto

f B A   so 1 : ' 'h f g f B B   is defined.  Since h  is the composition of 

one-to-one functions, it is one-to-one.  Now consider some element ~ 'a A A . (We know 

such an element exists since 'A  is a proper subset of A .)  Let ( )b f a . If we can show 

that there is no 'b B  so that ( )h b b , then h  will have been shown to have mapped 'B  

one-to-one into a proper subset of itself - and thus be infinite.  To that end, suppose there 

is such a 'b B  with ( )h b b .  That says 1( ( ( )))f g f b b  , so 1 1( ( )) ( )g f b f b  .  But 

since ( )b f a , we have 1( ( ))g f b a  .  This is a contradiction because ~ 'a A A  but g  

maps into 'A , so we would have 1( ( ))g f b  both being an element of 'A  and being 

outside of 'A .  We conclude that no such element 'b B  so that ( )h b b  exists and h  

maps 'B  one-to-one into a proper subset of itself.  'B  is then shown to be infinite and B , 

a superset of 'B , is also infinite.  
 
In Example 3, we saw that Theorem 3 simplified showing sets were infinite when we could 
find infinite subsets.  Theorem 4 extends that simplification but no longer must we find 
infinite sube sets – we may establish infiniteness by finding one-to-one mappings from 
known infinite sets.   
 

Example 4:  The set of points in the plane  2 4{( , )| ( 3) 6}W x y x y    is infinite. 

 
Proof:  Consider the mapping : [0,1]f W  defined by ( ) ( ,3)f t t .  Notice that this 

actually does map into W  since  for 0 1,t   2 4 2(3 3) 1 6t t     .  To show f  is 

one-to-one, consider distinct , [0,1]s t  , ( ) ( ,3) ( ,3) ( )f s s t f t   .  Thus f  is one-to-one 

and by Theorem 4, W  is infinite.  
 
As was stated initially, the theory of cardinality deals with one-to-one correspondences 
between sets.  We will now refine the concept of infinite set by distinguishing those sets that 
can be put into one-to-one correspondence with the natural numbers from those that 
cannot. 
 
Definition 3: A set A is countably infinite if there exists a one-to-one function mapping   
onto A.  A set is countable if it is finite or countably infinite.  A set is uncountably infinite if it is 
not countable. 
 
Let's show that  , the set of integers is countable infinite.  
 
Example 5:  The set of integers is countably infinite. 
 



Proof:  Consider :f   defined by 
/ 2

( )
( 1) / 2

n if n is even
f n

n if n isodd


 

 
.  We seek to 

show f  maps   one-to-one onto  .  First we will show that f  is one-to-one.  Consider 

distinct ,n m . Either both of n  and m  are even, both are odd, or one is even and one 

is odd.  If n  and m  are even, ( ) / 2 / 2 ( )f n n m f m   . If n  and m  are odd, 

( ) ( 1) / 2 ( 1) / 2 ( )f n n m f m       .  Lastly, if n  is even and m  is odd then 

( ) 0 ( )f n f m  . We conclude that f  is one-to-one. Lastly we will show that f  is onto. 

Consider any k .  If 0k   then 2k  and is even so (2 ) 2 / 2f k k k  . If 0k   

then (1 2 )k    and is odd so ( (1 2 )) ( (1 2 ) 1) / 2f k k k        . We conclude that 

f  is both one-to-one and onto and thus   is countably infinite.  

 
We could show that sets such as the even integers, the odd integers, and the powers of two 
are all countably infinite.  A legitimate question then is "Are there any uncountably infinite 
sets?". The following theorem shows that there are. The proof uses the classic 
diagonalization argument of Georg Cantor.  It is an proof by contradiction: we assume that 

the real interval [0,1]  is countably infinite, attempt to "count" all of them, find that at least 

one is missing, and get a contradiction.  
 

Theorem 5:  The real interval [0,1]  is uncountably infinite. 

 
Proof:  Theorem 2 guarantees that the interval is infinite.  To prove that it is uncountably 

infinite, let us assume that it is countably infinite.  Thus there exists 1 1: [0,1]
onto

g   . If 

we can show that there is a number in [0,1]  that is not equal to g i( )  for any i N , then 

g  is not onto and we have a contradiction. We then may conclude that [0,1]  is 

uncountably infinite. 
 

To this end, consider the decimal expansions of (0), (1),...g g  .  For i N , let g i( )  be 

expressed as . ... ...d d di i

i

i

1 2 1 . Some real numbers may have two different decimal expansions:  

one terminating in zeros, the other in nines.  If there is the option, we will choose the 
expansion terminating in nines.  Notice that 0 itself will then be the only number that 

terminates in zeros and that every number in [0,1]  has a unique such decimal expansion. 

Now consider constructing the number e e e ei . ... ...1 2 1  defined by e
if d

if d
i

i

i

i

i














1

1

1

1 1

2 1
 

for i = 0, 1, 2, …. First recognize that e  is a real number and e[0, ]1  (in fact 

e[ / , / ]1 9 2 9 ), and yet, e cannot equal g i( )  for any i N .  Suppose e g i ( ) , then the 

decimal expansions of the two must agree in every position, but in fact they differ in the 

i st1  decimal digit.  Since for no i N  is e g i ( ) , g  is not onto.   We conclude that no 

such g  exists and that [0,1]  is uncountably infinite. •  

 
The name  "diagonalization" is suggested in the construction of the number e  in the proof.  
If one were to make a column of the decimal expansions of g(0), g(1), ….., then e  is created 
by altering the entries on the diagonal of this table.  
 



To come are several theorems that can be summarized as "the union of a countable 
collection of countable sets is countable."  For that purpose the following theorem is very 
helpful. 
 
Theorem 6: If there exists a function :

onto
f A  then A  is countable. 

 
Proof:  If A  is finite we are done.  Assume then that A  is infinite.  Consider an array of 
the elements of A  induced by the function f  

0 1 ka a a  

where ( )ka f k .  We will define a new function :g A  and show that this function is 

both one-to-one and onto.  To that end, define 0(0)g a  and then remove all copies of 

elements of the array equal to 0a .  Define next (1)g  equal to the leading element on the 

remaining array – and then remove all copies of it.  In general, define ( )g i  as the leading 

element of the array after all copies of (0), (1), , ( 1)g g g i   have been removed.  Since A  

is infinite  will not end.  Thus for every i  , ( )g i  is defined.  We need to show this 

mapping is both one-to-one and onto.  To that end consider to properties of g : 

 For any element ja  in the array (and therefore in A ), there will be some value of 

i  , so that ( ) jg i a .  In fact, the value of i j . 

 By construction, the value of ( )g i  must be distinct from (0), (1), , ( 1)g g g i  , 

since all copies of those elements were removed prior to the definition of ( )g i . 

The first property guarantees that g  is onto and the second property guarantees that it is 

one-to-one.  We have established that either the set A  is finite or it is countably infinite.  •  
 
This Theorem has an immediate consequence. 
 
Theorem 7:  A subset of a countable set is countable. 
 

Proof:   Assume set Â  is countable and ˆA A .  If A is empty then it is obviously finite. 

Henceforth, we assume A is nonempty.  If Â  is finite then so will A be because of 

Theorem 3.  If Â  is countably infinite then there exists a function 
1 1 ˆ:
onto

f A . Choose 

any fixed element a A and define a new function :g A  as follows:  

( ) ( )
( )

( )

f n if f n A
g n

a if f n A


 

 
 

Since f  is onto, for any element a A  there exists an n  such that ( )f n a .  But then 

( )g n  is also equal to a  since ( ) ( )g n f n  if ( )f n A .  We conclude that g  is onto and 

from Theorem 6, A is countable. •  
 
 Corollary:  A superset of an uncountably infinite set is uncountably infinite. 
 

Proof:   Assume set A  is uncountably infinite and ˆA A . If Â  were countable then so 

would A . by Theorem 7.  That is a contradiction so Â  must be uncountably infinite. •  
 



Theorem 8: The union of a finite collection of finite sets is finite. 
 

Proof:   For  1n  , let 1 2{ , , , }nA A A  be a collection of finite sets.  We seek to prove  a 

stronger version of the theorem – that the cardinality of the union is less than or equal to 

the sum of the cardinalities of the sets iA .  To this end, for 1 i n   let #( )i in A . We 

proceed by induction. For  1n  , 1 1#( ) #( )A A .  Assume now that all unions of n  sets: 

11

#( ) #( )
n n

i i

ii

A A


 .  We seek to show that 
1 1

11

#( ) #( )
n n

i i

ii

A A
 



 .  But then 

1 1

1 1 1

1 11 1 1

#( ) #( ) #( ) #( ) #( ) #( ) #( )
n n n n n

i i n i n i n i

i ii i i

A A A A A A A A
 

  

   

        . •  

 
Theorem 9: The union of a countably infinite collection of finite sets is countable. 
 

Proof:  Let the finite sets be A A0 1, ,...  , define kn  to be the cardinality of kA , for k , 

and let A Ai

i






0

 .  Since for k , each kA  is finite, the elements can be ordered in 

some form 1 2 k

k k k

na a a , where kn  is the cardinality of kA . Consider an array of all of the 

elements of A  stretched out as

0 1

0 1

0 0 0 1 1 1

1 2 1 2 1 2

k

k

A AA

k k k

n n na a a a a a a a a .  We will define a 

function :f A  and then prove that this function is onto.  To define the function we 

use the array: ( ) k

lf i a  if k

la  is the i th element of the array (starting the counting from 

0i  .)  Since every element of the array (hence every element of A ) is the image under f  

for some i , f  is onto.  From Theorem 4, A  is countable.•  

 
Example 5:  The set of rational numbers is countably infinite. 
 

Proof:  .For k , define { / | , 0}kA p q p q k p k k q k q         .  Notice 

that each kA  is finite (in fact, having exactly (2 1) 2k k   elements) and given any rational 

number , this will be contained in /p q  is kA  for max{| |,| |}k p q .  Thus the set of 

rationals equals k

k

A


 and this set is countable by Theorem 9.  Since it contains the natural 

numbers as a subset, it is infinite.  We conclude that it is countably infinite.•  
 
The last of these theorems allows us to union a countably infinite collection of countably 
infinite sets and still the result is countably infinite. 
 
Theorem 10:  The union of a countably infinite collection of countably infinite sets is 
countably infinite. 
 

Proof:  Let the countably infinite sets be A A0 1, ,...  , and let A Ai

i






0

 .  Since for k , 

each kA  is countably infinite, there is a function 
1 1:k konto

f A . Thus, the elements can 



be ordered in the form 0 1

k k k

ia a a , where ( )k

i ka f i . Form now a new collection of sets 

0 1{ , , }B B  defined as follows: for i  0 1 2 1

1 2 1 0{ , , , , , }i i

i i i iB a a a a a

  .  From Theorem 9, 

A  is countable.  Since the infinite set 0A A , A  is infinite, and therefore it is countably 

infinite. •  
 

Theorem 11:  Let A  be uncountably infinite and 1 1:f A B , then B  is uncountably 

infinite. 
 

Proof:  From the lemma above, 1 1:
onto

f A B  , where ( )B f A  . By Theorem 4, B  is 

infinite.  Suppose B  is countably infinite. Then there exists a function 1 1:
onto

g B  .  

Consider the function :h A  defined as 1h f g .  This function is both one-to-one 

and onto since 1f   and g  are.  We would then have that A  is countably infinite but that 

would be a contradiction.  We conclude that B  is uncountably infinite.•  
 


