Homework 4 Solutions
 CS 336

The important issue is the logic you used to arrive at your answer.

1. In how many ways can you partition a set of $2 n$ elements into a collection of n pairs?

Imagine placing the $2 n$ elements in a row from left to right. For the leftmost element, there are $2 n-1$ possibilities for its pair-mate. Once these two elements have been removed, there are $2 n-2$ elements remaining. For the one that is now leftmost, there are $2 n-3$ choices for its pair-mate. This continues until there is a single pair remaining. Thus, the total number of choices is $\quad(2 n-1)(2 n-3)(2 n-5) \cdots 5 \cdot 3 \cdot 1$. (Sometimes this is denoted by $(2 n-1)!!$.)
2. How many n-digit numbers have their digits in non-decreasing order? (i.e. for $n=6$, the number 344455 is counted but 123465 is not - and 012345 is not a 6 digit number.)

Recognize that an n-digit number whose digits are in non-decreasing order is totally characterized by the positions where the digits change. That is, if we know where the transition is from 1 to 2 , from 2 to $3, \ldots$, and from 8 to 9 , then we know the number. (For example, if $n=3$ and we are told that the transition from 1 to 2 occurs prior to the first digit, that the transitions from 2 to 3,3 to $4, \ldots, 7$ to 8 occur between the first and second positions, and that the transition from 8 to 9 occurs after the last position, we know the number must be 288.) There are 8 such transitions and they may occur prior to any of the n digit positions as well as after the final position. Thus there are $n+1$ such locations where the 8 transitions may occur. This is equivalent to choosing 8 from $n+1$ with replacement and thus the number is $\binom{(n+1)+8-1}{8}=\binom{n+8}{8}$.
3. Use a combinatorial argument to prove:

$$
\binom{2 n+2}{n+1}=\binom{2 n}{n+1}+2\binom{2 n}{n}+\binom{2 n}{n-1} .
$$

(Hint: Clearly from the left hand side you will be choosing subsets of size $n+1$ from a set of $2 n+2$ elements. Consider a way of decomposing such choosing options into several disjoint cases.)

Consider a set A of $2 n$ elements together with distinct elements b and c, neither of which are elements of A. Letting $D=A \cup\{b\} \cup\{c\}$, we notice that D has cardinality $2 n+2$ and thus has $\binom{2 n+2}{n+1}$ subsets of size $n+1$. Alternatively, we could count these subsets by recognizing that each subset is either

1. A set of $n+1$ elements entirely from A,
2. The element $\{b\}$ and a set of n elements from A,
3. The element $\{c\}$ and a set of n elements from A, or 4. Both elements $\{b\}$ and $\{c\}$ and $n-1$ elements from A,
and that no such subset is in two or more of these cases. The total count for all subsets
of size $n+1$ is then $\binom{2 n}{n+1}+2\binom{2 n}{n}+\binom{2 n}{n-1}$.
