Homework 5
 CS 336
 Name
 The important issue is the logic you used to arrive at your answer.

\qquad

1. How many 10 character words can be formed using exactly four a 's, three b 's, two c 's, and one d ?
2. Use a combinatorial argument to prove: $\sum_{k=0}^{n}\binom{n}{k} r^{k}=(r+1)^{n}$. (Hint: Consider a set of $r+1$ elements as $A \cup\{b\}$, where A has r elements and $b \notin A$. Determine a situation that has $(r+1)^{n}$ options and then count it another way to get $\sum_{k=0}^{n}\binom{n}{k} r^{k}$.)
3. Suppose all sequences of length n drawn from r distinct elements are equally likely. Assume that the elements can be strictly ordered: $a_{1}<a_{2}<\ldots<a_{r}$. What is the probability that the sequence is non-decreasing? (From the use of "non-decreasing" rather than "increasing" you should assume that repetition is allowed.)
