Homework 14 CS 336

Name ______ Seating Section: 1 2 3 4 5 6

The important issue is the logic you used to arrive at your answer.

Consider the functions f and g defined on N by $f(n) = \begin{cases} n^2 & \text{for } n \text{ even} \\ 2n & \text{for } n \text{ odd} \end{cases}$ and 1. $g(n) = n^2$. Show that f = O(g) and $g \neq O(f)$.

2. Using Theorem 2 and induction, prove that if for i = 1, 2, ..., k, $f_i = O(g_i)$, then $\sum_{i=1}^{k} f_i = O(\sum_{i=1}^{k} |g_i|).$

3. Construct a simple counter-example such that $f_1 = O(g_1)$ and $f_2 = O(g_2)$ but $f_1 + f_2 \neq O(g_1 + g_2)$.