Name
Homework 14
Seating Section: 123456
CS 336
The important issue is the logic you used to arrive at your answer.

1. Consider the functions f and g defined on \boldsymbol{N} by $f(n)=\left\{\begin{array}{ll}n^{2} & \text { for } n \text { even } \\ 2 n & \text { for } n \text { odd }\end{array}\right.$ and $g(n)=n^{2}$. Show that $f=\mathrm{O}(g)$ and $g \neq \mathrm{O}(f)$.
2. Using Theorem 2 and induction, prove that if for $i=1,2, \ldots, k, f_{i}=\mathrm{O}\left(g_{i}\right)$, then $\sum_{i=1}^{k} f_{i}=\mathrm{O}\left(\sum_{i=1}^{k}\left|g_{i}\right|\right)$.
3. Construct a simple counter-example such that $f_{1}=\mathrm{O}\left(g_{1}\right)$ and $f_{2}=\mathrm{O}\left(g_{2}\right)$ but $f_{1}+f_{2} \neq \mathbf{O}\left(g_{1}+g_{2}\right)$.
