\qquad
Homework 23
Seating Section: R M L

The important issue is the logic you used to arrive at your answer.

1. Let A be the set of finite length strings of 0 s and 1 s and let $\boldsymbol{s}=<010101 \ldots>$ (i.e., the infinite string alternating 0 s and 1 s). Let B be the set of all infinite strings of the form $\boldsymbol{a}|\mid \boldsymbol{s}$ where $\boldsymbol{a} \in A$ and \| indicates concatenation. Is B finite, countably infinite, or uncountably infinite? Prove your assertion.
2. Using only Definition 2', show that the unit circle $A=\left\{(x, y) \mid x\right.$ and y are real and $\left.x^{2}+y^{2} \leq 1\right\}$ is infinite.
3. Consider arrays of positive integers whose sum is 17 (e.g., $\langle 17\rangle,<9,8\rangle$, and $<1,5,1,6,4>)$. Is the set of all such arrays finite, countably infinite, or uncountably infinite? Prove your assertion.
4. Since there are n ! permutations of n elements, a binary decision tree whose leaves are the $n!$ permutations must have height $\left\lceil\log _{2} n!\right\rceil$. This is thus the number of comparisons necessary to determine which permutation one has - thus to sort the elements. Yet this number is often quoted as $n \log _{2} n$. Prove that $\log _{2} n!=\mathrm{O}\left(n \log _{2} n\right)$.
5. Show with a simple counter-example that even if $f=\mathrm{O}(g)$ and $a>1$, it does not follow that $a^{f}=\mathrm{O}\left(a^{g}\right)$. (Hint: you may want to use that if $0<c<b$, then $b^{n} \neq \mathrm{O}\left(c^{n}\right)$.)
6. Suppose $f_{1}=\mathrm{O}\left(g_{1}\right)$ and $f_{2}=o\left(g_{2}\right)$, show $f_{1}+f_{2}=\mathrm{O}\left(\left|g_{1}\right|+\left|g_{2}\right|\right)$.
