## Homework 23 Solutions

## The important issue is the logic you used to arrive at your answer.

1. Let $A$ be the set of finite length strings of 0 s and 1 s and let $\boldsymbol{s}=<010101 \ldots>$ (i.e., the infinite string alternating 0 s and 1 s ). Let $B$ be the set of all infinite strings of the form $\boldsymbol{a}|\mid \boldsymbol{s}$ where $\boldsymbol{a} \in A$ and $| \mid$ indicates concatenation. Is B finite, countably infinite, or uncountably infinite? Prove your assertion.

For $n \geq 0$, the set $A_{n}$ of bit strings of length $n$ is finite. The set $B_{n}$ composed of strings from $A_{n}$ concatenated with $s$ is also finite. Since $B=\bigcup_{n=0}^{\infty} B_{n}, B$ is the countable union of a set of countable sets. Therefore, $B$ is countable. Since $B$ contains the infinite subset $\{s, 0| | s, 00| | s, 000| | s, \ldots\}$ it cannot be finite, thus $B$ is countably infinite.
2. Using only Definition 2', show that the unit circle $A=\left\{(x, y) \mid x\right.$ and $y$ are real and $\left.x^{2}+y^{2} \leq 1\right\}$ is infinite.

Define $f: A \rightarrow A$ by $f(x, y)=(x / 2, y / 2)$. Since $\left(x_{1}, y_{1}\right) \neq\left(x_{2}, y_{2}\right)$ implies that $\left(x_{1} / 2, y_{1} / 2\right) \neq\left(x_{2} / 2, y_{2} / 2\right), \quad f$ is one-to-one. Furthermore, since $(x / 2)^{2}+(y / 2)^{2}=\left(x^{2}+y^{2}\right) / 4 \leq 1 / 4<1, f$ maps $A$ into a proper subset of itself.
3. Consider arrays of positive integers whose sum is 17 (e.g., $\langle 17\rangle,\langle 9,8\rangle$, and $<1,5,1,6,4>$ ). Is the set of all such arrays finite, countably infinite, or uncountably infinite? Prove your assertion.

We shall prove this set is finite by showing that it is a subset of a finite set. Consider the set of arrays of length $l$ for $1 \leq l \leq 17$ whose integer elements must have values between 1 and 17. This set is finite and the collection of all such sets for $1 \leq l \leq 17$ is also finite. The set of positive integer arrays with sum 17 is a subset of this, thus must be finite as well.
4. Since there are $n$ ! permutations of $n$ elements, a binary decision tree whose leaves are the $n!$ permutations must have height $\left\lceil\log _{2} n!\right\rceil$. This is thus the number of comparisons necessary to determine which permutation one has - thus to sort the elements. Yet this number is often quoted as $n \log _{2} n$. Prove that $\log _{2} n!=\mathrm{O}\left(n \log _{2} n\right)$.

For $n \geq 1$, we have $\log _{2} n!=\log _{2}\left(\prod_{i=1}^{n} i\right)=\sum_{i=1}^{n} \log _{2} i \leq \sum_{i=1}^{n} \log _{2} n=n \log _{2} n$. Thus $\left|\log _{2} n!\right| \leq 1 \cdot|n \log n|$ and $\log _{2} n!=\mathrm{O}\left(n \log _{2} n\right)$.
5. Show with a simple counter-example that even if $f=\mathrm{O}(g)$ and $a>1$, it does not follow that $a^{f}=\mathrm{O}\left(a^{g}\right)$. (Hint: you may want to use that if $0<c<b$, then $b^{n} \neq \mathrm{O}\left(c^{n}\right)$.)

Let $a=2$, and for $n \geq 0, f(n)=n$ and $g(n)=n / 2$. Clearly $f=\mathrm{O}(g)$, since for $n \geq 0,|n| \leq 2 \cdot|n / 2|$. However, $a^{g(n)}=2^{n / 2}=(\sqrt{2})^{n}$. Since $0<\sqrt{2}<2,2^{n} \neq \mathrm{O}\left((\sqrt{2})^{n}\right)$ so $a^{f} \neq \mathrm{O}\left(a^{g}\right)$.
6. Suppose $f_{1}=\mathrm{O}\left(g_{1}\right)$ and $f_{2}=o\left(g_{2}\right)$, show $f_{1}+f_{2}=\mathrm{O}\left(\left|g_{1}\right|+\left|g_{2}\right|\right)$.

By definition, there exist non-negative constants $M_{1}$ and $N_{1}$ such that for all $n \geq N_{1}$, $\left|f_{1}(n)\right| \leq M_{1}\left|g_{1}(n)\right|$ and for $\varepsilon=M_{1}$, there exist non-negative constant $N_{2}$ such that for all $n \geq N_{2},\left|f_{2}(n)\right| \leq \varepsilon\left|g_{2}(n)\right|=M_{1}\left|g_{2}(n)\right|$. For $n \geq \max \left\{N_{1}, N_{2}\right\}$ both inequalities hold so:
$\left|f_{1}(n)+f_{2}(n)\right| \leq\left|f_{1}(n)\right|+\left|f_{2}(n)\right| \leq M_{1}\left|g_{1}(n)\right|+M_{1}\left|g_{2}(n)\right| \leq M_{1}\left(\left|g_{1}(n)\right|+\left|g_{2}(n)\right|\right)$.
Therefore, $f_{1}+f_{2}=\mathrm{O}\left(\left|g_{1}\right|+\left|g_{2}\right|\right)$.

