Examination 1 Solutions

1. [10] How many arrangements of the numbers 31415926535 begin with 3 or end with 5 (or both)?

In the array of 11 numbers there 2 ones, 1 two, 2 threes, 1 four, 3 fives, 1 six, and 1 nine. Of these, $\left(\right.$\begin{tabular}{ccccccc}
\& \multicolumn{6}{c}{}

2 \& 1 \& 1 \& 1 \& 3 \& 1 \& 1

$)$ begin with a three, $\left(\right.$

\& \multicolumn{5}{c}{10} \&

2 \& 1 \& 2 \& 1 \& 2 \& 1 \& 1
\end{tabular}$)$ end with a five, and \(\left(\begin{array}{ccccccc} \& \& \& 9 \& \& \&

2 \& 1 \& 1 \& 1 \& 2 \& 1 \& 1\end{array}\right)\) begin with a three and end with a five. By the principle of inclusion and exclusion

$\left(\right.$| | 10 | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 1 | 1 | 1 | 3 | 1 | 1 |\()+\left(\begin{array}{ccccccc}

2 \& 1 \& 2 \& 1 \& 2 \& 1 \& 1\end{array}\right)-\left($$
\begin{array}{ccccccc} & & & 9 & & & \\
2 & 1 & 1 & 1 & 2 & 1 & 1\end{array}
$$\right)\) begin with 3 or end with 5 .
2. [10] A class of 40 students is to illustrate all functions from $\{a, b, c\}$ into $\{1,2, \ldots, 8\}$. Prove that at least one student must illustrate at least nine one-to-one functions.

There are $8 \cdot 7 \cdot 6=336$ one-to-one functions from $\{a, b, c\}$ into $\{1,2, \ldots, 8\}$. Since $\left\lceil\frac{336}{40}\right\rceil=\lceil 8.6\rceil=9$, by the pigeonhole principle, at least one student must illustrate at least nine one-to-one functions.
3. a. [10] Using a combinatorial argument, prove that for $n \geq 1$ and $k \geq 1$:

$$
n^{k}-n^{k-1}=(n-1) n^{k-1}
$$

Consider arrays of length k selected from a set $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ in which the first element cannot be a_{1}. For the left side, there are n^{k} total arrays without the restriction and n^{k-1} arrays that have a_{1}. as the first element. Thus, there are $n^{k}-n^{k-1}$ arrays in which the first element is not a_{1}. Alternatively, there are $n-1$ non- a_{1} options for the first elements and n options for the remaining $k-1$ elements, giving $(n-1) n^{k-1}$. We may conclude that $n^{k}-n^{k-1}=(n-1) n^{k-1}$.
b. [10] Using a combinatorial argument, prove that for $m \geq n \geq p \geq 0$:

$$
\binom{m}{n}\binom{n}{p}=\binom{m}{p}\binom{m-p}{n-p}
$$

Consider selecting two distinct subsets, A and B, of cardinalities $n-p$ and p, respectively, from a set C of cardinality m. For the left side, there are $\binom{m}{n}$ ways to select $A \cup B$ from C, then $\binom{n}{p}$ ways to select B from $A \cup B$. The remaining elements of $A \cup B$ become A. Thus, there are $\binom{m}{n}\binom{n}{p}$ such decompositions. Alternatively, we may select the elements of B first in $\binom{m}{p}$ ways and then select the $n-p$ elements of A from the remaining $m-p$ elements of $C \square B$. This can be done in $\binom{m-p}{n-p}$ ways, so there are there are $\binom{m}{p}\binom{m-p}{n-p}$ such selections and this must equal $\binom{m}{n}\binom{n}{p}$.
4. [10] For $n \geq 2$, how many arrays of length $2 n-1$ using one a, one b, and $2 n-3 c$'s have the a in one of first n positions and the b in one of last n positions? (Obviously only one could occupy position n.)

Assuming position n is occupied by a c, there are $n-1$ positions for the a and $n-1$ positions for the b, so $(n-1)^{2}$ arrays. If either a or b occupies position n, there are two choices for which of those is in the position and then $n-1$ choices for the position of the one not in position n, so $2(n-1)$ arrays. The total is $(n-1)^{2}+2(n-1)=(n+1)(n-1)$ arrays.
5. [10] How many numbers between 0 and 999,999 have (decimal) digits adding to 8 ?

Consider six bins labeled 1 through 6. If balls are placed into the bins and no more than nine balls are in any one bin, we could interpret the result as a number with the $\mathrm{k}^{\text {th }}$ digit equaling the number of balls in the $\mathrm{k}^{\text {th }}$ bin. Thus, no balls in any bin is associated with $0, \ldots$, nine balls in each of the six bins is 999,999 . The sum of the digits is the total number of balls. If 8 balls are positioned in the six bins the digits of the associated numbers ad to 8 . There are $\binom{8+6-1}{8}=\binom{13}{8}$ such numbers.
6. a. [5] Two distinct, unordered numbers are selected from $\{1, \ldots, 30\}$ and all such selections are equally likely. What is the probability that (at least) one of the numbers is odd?

There are $\binom{30}{2}$ equally likely selections but since there are 15 even numbers in $\{1, \ldots, 30\}$, there are $\binom{15}{2}$ selections where both numbers are even so there are $\binom{30}{2}-\binom{15}{2}$ selections where at least one number is odd. The probability is then $\frac{\binom{30}{2}-\binom{15}{2}}{\binom{30}{2}}$.
b. [5] What is the probability that both numbers are prime given that (at least) one of them is odd?

There are 9 odd primes in $\{1, \ldots, 30\}$. Any selection of two distinct primes from $\{1, \ldots, 30\}$ must have at least one odd number (since there is only one even prime). So there are $\binom{10}{2}$ selections where both numbers are prime and at least one is odd. The probability that both numbers are prime given that (at least) one of them is odd is $\frac{\binom{10}{2}}{\binom{30}{2}-\binom{15}{2}}$.

