CS 336H Examination 1

1	10	Examination 1			
2	10				
3	20	Name			
4	10	1. The important issue is the logic you used to arrive at your answer.			
5	10				
6	10	 2. Use extra paper to determine your solutions then neatly transcribe them onto these sheets. 			
Total	70	3. Do not submit the scratch sheets. However, all of the logic necessary			
		to obtain the solution should be on these sheets.			
		4. Comment on all logical flaws and omissions and enclose the			

comments in boxes

with 3 or end with 5 (or both)? **1.** [10] How many arrangements of the numbers 31415926535 begin

2. [10] A class of 40 students is to illustrate all functions from $\{a, b, c\}$ into $\{1, 2, ..., 8\}$. Prove that at least one student must illustrate at least nine one-to-one functions.

3. a. [10] Using a combinatorial argument, prove that for $n \ge 1$ and $k \ge 1$: $n^k - n^{k-1} = (n-1)n^{k-1}$

b. [10] Using a combinatorial argument, prove that for $m \ge n \ge p \ge 0$:

(m)	$\binom{n}{}$	_	(m)	$\binom{m-p}{n-p}$
(n)	(p)	_	(p)	(n-p)

4. [10] For $n \ge 2$, how many arrays of length 2n - 1 using one *a*, one *b*, and 2n - 3c's have the *a* in one of first *n* positions and the *b* in one of last *n* positions? (Obviously only one could occupy position *n*.)

5. [10] How many numbers between 0 and 999,999 have (decimal) digits adding to 8?

6. a. [5] Two distinct, unordered numbers are selected from $\{1, ..., 30\}$ and all such selections are equally likely. What is the probability that (at least) one of the numbers is odd?

b. [5] What is the probability that both numbers are prime given that (at least) one of them is odd?