Examination 1 Solutions

CS 336

1. For $n \geq m \geq 1$, let $A=\{1,2, \ldots, 2 m\}, B=\{1,2, \ldots, 2 n\}$, and consider functions mapping from A into B.
a. [5] How many of these functions map even numbers to even numbers and odd number to odd numbers (i.e., how many functions have both properties)?
b. [5] Of these functions that map even numbers to even numbers and odd number to odd numbers, how many are one-to-one?
2.a [10] Present a combinatorial argument that for all positive integers n :

$$
\binom{2 n}{2}=2\binom{n}{2}+n^{2}
$$

b. [10] Present a combinatorial argument that for all positive integers n

$$
\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}
$$

(Hint: Consider distinct sets A and B each of cardinalities n.)
3. [10] For $n \geq m \geq 1$, in how many ways can n identical coins be distributed among m nonidentical people such that every person has at least one coin?
4. [10] For $n \geq n_{1}, n_{2}, n_{3}, n_{4} \geq 0$, you are given n non-identical books and five non-identical boxes. How many ways are there to distribute books into the boxes so that box 1 has exactly n_{1} books, box 2 has exactly n_{2} books, ..., and box 5 has the remaining books (if any)?
5. [10] For $n \geq 3$, how many strings of length n consisting of $a s, b s$, and $c s$ are there that have exactly one a and at least two bs?
6. Consider strings of length $n \geq 5$ containing exactly $k 1 \mathrm{~s}$ and $n-k 0$ s, where $k \geq 5$. Consider that all such strings are equally likely.
a. [5] What is the probability that such a string begins with five 1 s ?
b. [5] What is the probability that such a string begins with five 1 s given that it begins with three 1 s ?

