Examination 1 Solutions

CS 336

1. For \(n \geq m \geq 1 \), let \(A = \{1, 2, \ldots, 2m\} \), \(B = \{1, 2, \ldots, 2n\} \), and consider functions mapping from \(A \) into \(B \).

a. [5] How many of these functions map even numbers to even numbers and odd number to odd numbers (i.e., how many functions have both properties)?

b. [5] Of these functions that map even numbers to even numbers and odd number to odd numbers, how many are one-to-one?

2. [10] Present a combinatorial argument that for all positive integers \(n \):

\[
\binom{2n}{2} = 2 \binom{n}{2} + n^2.
\]

b. [10] Present a combinatorial argument that for all positive integers \(n \)

\[
\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}.
\]

(Hint: Consider distinct sets \(A \) and \(B \) each of cardinalities \(n \).)

3. [10] For \(n \geq m \geq 1 \), in how many ways can \(n \) identical coins be distributed among \(m \) non-identical people such that every person has at least one coin?

4. [10] For \(n \geq n_1, n_2, n_3, n_4 \geq 0 \), you are given \(n \) non-identical books and five non-identical boxes. How many ways are there to distribute books into the boxes so that box 1 has exactly \(n_1 \) books, box 2 has exactly \(n_2 \) books, \(\ldots \), and box 5 has the remaining books (if any)?

5. [10] For \(n \geq 3 \), how many strings of length \(n \) consisting of \(a \)'s, \(b \)'s, and \(c \)'s are there that have exactly one \(a \) and at least two \(b \)'s?

6. Consider strings of length \(n \geq 5 \) containing exactly \(k \) 1's and \(n - k \) 0's, where \(k \geq 5 \). Consider that all such strings are equally likely.

a. [5] What is the probability that such a string begins with five 1's?

b. [5] What is the probability that such a string begins with five 1's given that it begins with three 1's?