Examination 1 Solutions

CS 336

1. [5] How many strings of 0 s and 1 s of length 8 have an even number of 0 s or an even number of 1s or both?

Since the length is eight, having an even number of 0 s is equivalent to baving an even number of 1 s . The number of 0 s is either $0,2,4,6$, or 8 . Thus, there are $\binom{8}{0}+\binom{8}{2}+\binom{8}{4}+\binom{8}{6}+\binom{8}{8}$ ways to choose the places for them. The $1 s$ fill the remaining places.

2 a. [5] For $n \geq 2$, how many permutations of $a_{1}, a_{2}, \ldots, a_{n}$ have a_{1} in positions 1,2 , or 3 ?

There are three places for a_{1}. This leaves $n-1$ places for a_{2}, \ldots, a_{n} and they can be filled in $(n-1)$! way, so there are $3(n-1)$! permutations of $a_{1}, a_{2}, \ldots, a_{n}$ bave a_{1} in positions 1,2 , or 3 .
[5] \mathbf{b}. For $n \geq 2$, how many permutations of $a_{1}, a_{2}, \ldots, a_{n}$ have a_{1} in positions 1,2 , or 3 and a_{2} in positions 2, 3, or 4?

We must examine cases. If a_{1} is in position 1, then there are three options for a_{2}. Alternatively, if a_{1} is in positions 2 or 3 , then there are only two options (each) for a_{2}. The total is $3+2 \cdot 2=7$. Having positioned a_{1} and a_{2}, there remain $n-2$ places for a_{3}, \ldots, a_{n} and they can be filled in $(n-2)$! way. Thus, there are $7(n-2)$! permutations of $a_{1}, a_{2}, \ldots, a_{n}$ baving a_{1} in positions 1,2 , or 3 and a_{2} in positions 2 , 3 , or 4 .
3.a [10] Present a combinatorial argument that for all positive integers n

$$
\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}
$$

(Hint: Consider distinct sets A and B each of cardinalities n.)
Let A and B be disjoint sets of cardinality n each. Consider how many subsets of $A \cup B$ there are of cardinality n. Since we are selecting without repetition and ignoring order from a set of cardinality $2 n$, there are $\binom{2 n}{n}$ such subsets. Alternatively, separate this into cases based upon the number of elements of A in the subset. This value, denoted by k, can vary from zero to n. For a fixed value of k, there are $\binom{n}{k}$ ways to select the elements of A, and then $\binom{n}{k}$ ways to select the elements of B that will not be in the subset - leaving the $n-k$ that will be in the subset. Thus there are $\binom{n}{k}^{2}$ way to choose the subset with k e elements coming from A. The total is then $\sum_{k=0}^{n}\binom{n}{k}^{2}$ and this must equal $\binom{2 n}{n}$.
b [10] Present a combinatorial argument that for all positive integers $1 \leq k<m$:

$$
m!=\binom{m}{k} k!(m-k)!
$$

Let set $C=A \cup B$, where A and B are disjoint and have k_{e} and ($m-k_{k}$) elements, respectively. We consider the number of permutations of C. Since there are m elements in C there are $m!$ permutations. Alternatively, first choose the k positions to be occupied by the k elements of A. There are $\binom{m}{k}$ ways to choose these. Then, permute these elements of A. There are $k!$ ways to do this. Finally, the remaining m-k position must hold the elements of B and there are $(m-k)$! was to permute them. This leaves $\binom{m}{k} k!(m-k)$! permutations of the elements of C and this must equal $m!=\binom{m}{k} k!(m-k)$!
4. [10] Consider 5-tuples of the form $\left\langle r_{1}, r_{2}, r_{3}, r_{4}, r_{5}\right\rangle$, where the $r_{i} \geq 0$. How many such 5 -tuples are there satisfying

$$
r_{1}+r_{2}+r_{3}+r_{4}+r_{5} \leq 20 ?
$$

Consider arranging 20 identical balls in six bins labeled $r_{1}, r_{2}, r_{3}, r_{4}, r_{5}$ and "excess". The number of balls in each bin is non-negative and the total number is 20 so the sum of those in the first five bins is at most 20. There are $\binom{20+6-1}{20}$ ways to arrange the balls so this is the number of 5 -tuples are there satisfying $r_{1}+r_{2}+r_{3}+r_{4}+r_{5} \leq 20$.
5. [10] For $n \geq 5$, consider strings of length n using upper case roman letters (i.e., $\{A, B$, $C, \ldots, X, Y, Z\})$. Assuming all such strings are equally likely what is the probability that the string occurs in non-decreasing order (i.e. all A s precede all $B s$, all $B s$ precede all $C s, \ldots$ etc.)?

The are 26^{n} such equally likely strings. The number of these strings in which the characters occur in nondecreasing order is the same as the number of ways of placing n balls in 26 bins (since the strings is totally determined by knowing the number of A 's. B 's, etc.) There are $\binom{26+n-1}{n}$ such placements so the probability of a non-decreasing string is $\binom{26+n-1}{n} / 26^{n}$.
6. [10] Consider strings of length $n \geq 2$ containing exactly $k 1$'s and $n-k 0$'s and having no adjacent 1's (i.e., there is at least one 0 between any 1 's). Assuming $k \geq 1$ and $n \geq 2 k$, how many such strings are there? (Hint: Consider cases based upon the contents of the last position.)

The string must terminate in a 1 or a 0 . If it terminates in a 1 , then all $k-1$ previous 1 's must be immediately followed by 0 's (i.e 10 pairs). This leaves $n-1-2(k-1)=n-2 k+10$'s not immediately following 1 's. With $k-110$ pairs and $n-2 k+10$'s, there are $n-k$ positions to be filled. This can be done in $\binom{n-k}{k-1}$ ways. If the string terminates in a 0 , then all k previous 1 's must be immediately followed by 0's (i.e 10 pairs). This leaves $n-2 k$ 0's not immediately following 1 's. With $k 10$ pairs and $n-2 k$ 0 's, there are $n-k$ positions to be filled. This can be done in $\binom{n-k}{k}$ ways. The total is then $\binom{n-k}{k-1}+\binom{n-k}{k}$.

