## Practice Examination 1

1. [5] How many strings of 0 s and 1 s of length 8 have an even number of 0 s or an even number of 1s or both?

2 a. [5] For $n \geq 2$, how many permutations of $a_{1}, a_{2}, \ldots, a_{n}$ have $a_{1}$ in positions 1,2 , or 3 ?
[5] b. For $n \geq 2$, how many permutations of $a_{1}, a_{2}, \ldots, a_{n}$ have $a_{1}$ in positions 1,2 , or 3 and $a_{2}$ in positions 2 , 3 , or 4 ?
3.a [10] Present a combinatorial argument that for all positive integers $n$

$$
\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}
$$

(Hint: Consider distinct sets A and B each of cardinalities $n$.)
b [10] Present a combinatorial argument that for all positive integers $1 \leq k<m$ :

$$
m!=\binom{m}{k} k!(m-k)!
$$

4. [10] Consider 5-tuples of the form $\left\langle r_{1}, r_{2}, r_{3}, r_{4}, r_{5}\right\rangle$, where the $r_{i} \geq 0$. How many such 5 -tuples are there satisfying

$$
r_{1}+r_{2}+r_{3}+r_{4}+r_{5} \leq 20 ?
$$

5. [10] For $n \geq 5$, consider strings of length $n$ using upper case roman letters (i.e., $\{A, B$, $C, \ldots, X, Y, Z\})$. Assuming all such strings are equally likely what is the probability that the string occurs in non-decreasing order (i.e. all $A$ s precede all $B s$, all $B s$ precede all $C s, \ldots$ etc.)?
6. [10] Consider strings of length $n \geq 2$ containing exactly $k$ 's and $n-k 0$ 's and having no adjacent 1's (i.e., there is at least one 0 between any 1 's). Assuming $k \geq 1$ and $n \geq 2 k$, how many such strings are there? (Hint: Consider cases based upon the contents of the last position.)
