

onto these sheets.

3. Do not submit the scratch sheets. However, all of the logic necessary to obtain the solution should be on these sheets.

4. Comment on all logical flaws and omissions and enclose the

comments in boxes

1. [5] Given m 1's, n 2's, and p 3's, how many distinct sequences are there that employ each of the m+n+p symbols? (Note: All 1's are identical as are all 2's and all 3's)

2.a [10] Present a combinatorial argument that for all positive integers x and y

$$\sum_{k=0}^{n} \binom{n}{k} x^{k} y^{n-k} = (x+y)^{n}.$$

(Hint: Consider sequences drawn from the union of distinct sets A and B of cardinalities x and y, respectively.)

b [10] Present a combinatorial a combinatorial argument that for all positive integers $1 \le k \le m \le r$:

$$\binom{r}{m}\binom{m}{k} = \binom{r}{k}\binom{r-k}{m-k}.$$

3 a. [5] How many permutations of *a*, *b*, *c*, *d*, *e*, and *f* have *a* to the left of *b* and *b* to the left of *c*?

b. [10] How many permutations of *a*, *b*, *c*, *d*, *e*, and *f* have *a* to the left of *b* or *b* to the left of *c*?

4. [10] Consider 5-tuples of the form $\langle r_1, r_2, r_3, r_4, r_5 \rangle$, where the $r_i \ge 1$. How many such 5-tuples are there satisfying

$$r_1 + r_2 + r_3 + r_4 + r_5 = 20$$
?

(Hint: You have seen the problem with the restriction $r_i \ge 0$. Can you make a small change to guarantee $r_i \ge 1$?)

5. [10] Consider strings of length $n \ge 2$ containing exactly k 1's and n-k 0's and having no adjacent 1's (i.e., there is at least one 0 between any 1's). Assuming $k \ge 1$ and $n \ge 2k$, how many such strings are there?

6. a. [10] For $n \ge 6$, consider strings of length *n* using elements of $\{a, b, c, d, e\}$. Assume all such strings are equally likely. What is the probability that a string has three or more a's?

b. [5] What is the probability that such a string has exactly three *b*'s given that it has exactly three *a*'s?