1	5				
2	10		Examination 1	Name	
3	20				
4	10			CS 336	
5	15			C3 330	

- 1. The important issue is the logic you used to arrive at your answer.
- 2. Use extra paper to determine your solutions then neatly transcribe them onto these sheets.
- 3. Do not submit the scratch sheets. However, all of the logic necessary to obtain the solution should be on these sheets.
- 4. Comment on all logical flaws and omissions and enclose the

comments in boxes

Total 60

1. [5] Given $n \ge 9$, how many strings of length n containing 0s, 1s, 2s, and 3s, have exactly three 0s, exactly four 1s, and either one or two 2s (and the rest 3s)?

2. For $n \ge 1$, let A and B be disjoint sets, each of cardinality n, and $C = A \cup B$. Consider functions $f: C \to C$.

[5] a. How many such functions are there that map A to B and B to A (i.e., for all $x \in C$, if $x \in A$ then $f(x) \in B$ and if $x \in B$ then $f(x) \in A$)?

[5] b. How many such one-to-one functions are there that map A to B and B to A?

3.a [10] Present a combinatorial argument that for all positive integers n, p, and q:

$$\sum_{k=0}^{n} \binom{n}{k} p^k q^{n-k} = (p+q)^n.$$

b [10] Present a combinatorial argument that for all integers p and n so that $1 \le p \le n$:

$$\binom{n+3}{p} = \binom{n}{p} + \binom{3}{1} \binom{n}{p-1} + \binom{3}{2} \binom{n}{p-2} + \binom{n}{p-3}.$$

- 4. [10] Given positive integers p and n, in how many ways can p identical tokens be distributed to n different people so that no person has all of the tokens?
- 5. Consider six card hands drawn for a 52 card deck and assume all such are equally likely.
- a.[5] What is the probability that the hand has exactly five clubs?
- b.[10] What is the probability that the hand has exactly five clubs given that it has at least one spade?