Examination 2 Solutions

CS 336

1. [20] Using only Definition 2', prove that the set *S* of odd length strings of *a*s is infinite. (For uniformity, please use the < ... > notation for strings (so < aaa > is a string of three *a*s) and || for concatenation of strings (so < aaa > || < aaaa >=< aaaaaaa >).)

For $s \in S$, define $f: S \to S$ by $f(s) = \langle aa \rangle | |s|$ (i.e. the string consisting of two *a*s concatenated with *s*). If $s \in S$ then *s* has an odd number of *a*s so $f(s) = \langle aa \rangle | |s|$ will as well. For $s, t \in S$, if $s \neq t$, then *s* and *t* must have different lenths. Thus $f(s) = \langle aa \rangle | |s \neq \langle aa \rangle | |t = f(t)$ since $\langle aa \rangle | |s|$ and $\langle aa \rangle | |t|$ must also have different lengths, so *f* is one-to-one. Since for all $s \in S$, f(s) must have at least two *a*s, there is no $s \in S$ such that $f(s) = \langle aa \rangle .$. We have then that *f* maps *S* into $S \sim \{\langle a \rangle\}$, which is a proper subset of *S*, and by Definition 2', *S* is infinite.

2. [20] Consider the set P of strings of {a,b,c,d} of odd length. Prove P is countably infinite.

For $n \in \mathbb{N}$, let $P_n = \{strings \text{ of } \{a, b, c, d\} \text{ of } length 2n+1\}$. So $|P_n| = 4^n$ and each P_n is finite. Since $P = \bigcup_{n \in \mathbb{N}} P_n$, by Theorem 10, P is countable. By Theorem 1, \mathbb{N} is infinite and we define $f : \mathbb{N} \to P$ by $f(n) = \langle a ... a \rangle$ of length 2n + 1. For $n, m \in \mathbb{N}, n \neq m \Rightarrow 2n + 1 \neq 2m + 1 \Rightarrow f(n) \neq f(m)$ since the first has length 2m + 1 and the second has length 2m + 1, so f is one to one and thus by Theorem 4, P is infinite. We conclude that P is countable infinite.

3. [20] Let *A* be finite (and non-empty), *B* be countably infinite, *C* be uncountably infinite and $D = A \times B \times C$. Is *D* finite, countably infinite, or uncountably infinite? Prove your claim.

The set *D* is uncountably infinite. Let $a \in A$ and $b \in B$. Define $f: C \to D$ by f(c) = (a,b,c). This function is one-to-one since if *c* and *c*' are elements of *C* and $c \neq c'$, then $f(c) = (a,b,c) \neq (a,b,c') = f(c')$. By Theorem 12, *D* is uncountably infinite.

4. [20] Using no other asymptotic dominance theory than definitions, prove that $1+2n+3n^2+4n^3 = O(n^3)$.

Let M = 10 and N = 1. For $n \ge N = 1$, we have $|1 + 2n + 3n^2 + 4n^3| = 1 + 2n + 3n^2 + 4n^3 \le 1n^3 + 2n^3 + 3n^3 + 4n^3 = 10n^3 = M | n^3 |$. We conclude $1 + 2n + 3n^2 + 4n^3 = O(n^3)$. 5. [20] Prove that if $f_1 = o(g)$ and $f_2 = o(g)$ then $f_1 + f_2 = o(g)$. (Hint: $\varepsilon = \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$.)

If $f_1 = o(g)$ then for if ε is positive then so is $\frac{\varepsilon}{2}$, so there exists N_1 so that $n \ge N_1$ guarantees $|f_1(n)| \le \frac{\varepsilon}{2} |g(n)|$. Similarly, there exists N_2 so that $n \ge N_2$ guarantees $|f_2(n)| \le \frac{\varepsilon}{2} |g(n)|$. Combining these we have for $n \ge \max\{N_1, N_2\} |f_1(n) + f_2(n)| \le |f_1(n)| + |f_2(n)| \le \frac{\varepsilon}{2} |g(n)| + \frac{\varepsilon}{2} |g(n)| = \varepsilon |g(n)|$. We conclude that $f_1 + f_2 = o(g)$.

6. [20] Prove that if 0 < a < b, then $b^n \neq O(a^n)$.

Given $M \ge 0$ and $N \ge 0$, let $\overline{M} = \max\{M, l\}$ thus $\overline{M} \ge M$ and $\ln(\overline{M}) \ge 0$. Notice that $\ln(\frac{b}{a}) > 0$ and choose $n = \max\{N, \left\lfloor \frac{\ln(\overline{M})}{\ln(\frac{b}{a})} \right\rfloor + 1$. For this *n* we have $n > \frac{\ln(\overline{M})}{\ln(\frac{b}{a})}$, thus $n \ln(\frac{b}{a}) > \ln(\overline{M})$ and $(\frac{b}{a})^n > \overline{M} \ge M$. But then $|b^n| = b^n > M a^n = M |a^n|$ so $b^n \ne O(a^n)$.