## Examination 2 Solutions

CS 336

1. [20] Using only Definition 2', prove that the set $S$ of odd length strings of as is infinite. (For uniformity, please use the $<\ldots>$ notation for strings (so $<a a a>$ is a string of three $a s$ ) and || for concatenation of strings (so $\langle a a\rangle|\mid<$ aaaa $\rangle=\langle$ aaaaaa $\rangle$ ).)

For $s \in S$, define $f: S \rightarrow S$ by $f(s)=<a a>| | s$ (i.e. the string consisting of two $a s$ concatenated with $s$ ). If $s \in S$ then $s$ has an odd number of as so $f(s)=\langle a a\rangle| | s$ will as well. For $s, t \in S$, if $s \neq t$, then $s$ and $t$ must have different lenths. Thus $f(s)=\langle a a\rangle| | s \neq\langle a a\rangle| | t=f(t)$ since $\langle a a\rangle|\mid s$ and $\langle a a\rangle| \mid t$ must also have different lengths, so $f$ is one-to-one. Since for all $s \in S, f(s)$ must have at least two as, there is no $s \in S$ such that $f(s)=\langle a\rangle$.. We have then that $f$ maps $S$ into $S \sim\{\langle a\rangle\}$, which is a proper subset of $S$, and by Definition 2', $S$ is infinite.
2. [20] Consider the set P of strings of $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ of odd length. Prove P is countably infinite.

For $n \in \mathbb{N}$, let $P_{n}=\{$ strings of $\{a, b, c, d\}$ of length $2 n+1\}$. So $\left|P_{n}\right|=4^{n}$ and each $P_{n}$ is finite. Since $P=\bigcup_{n \in \mathbb{N}} P_{n}$, by Theorem 10, $P$ is countable. By Theorem 1, $\mathbb{N}$ is infinite and we define $f: \mathbb{N} \rightarrow P$ by $f(n)=\langle a \ldots a>$ of length $2 n+1$. For $n, m \in \mathrm{~N}, n \neq m \Rightarrow 2 n+1 \neq 2 m+1 \Rightarrow f(n) \neq f(m)$ since the first has length $2 m+1$ and the second has length $2 m+1$, so $f$ is one to one and thus by Theorem $4, P$ is infinite. We conclude that $P$ is countable infinite.
3. [20] Let $A$ be finite (and non-empty), $B$ be countably infinite, $C$ be uncountably infinite and $D=A \times B \times C$. Is $D$ finite, countably infinite, or uncountably infinite? Prove your claim.

The set $D$ is uncountably infinite. Let $a \in A$ and $b \in B$. Define $f: C \rightarrow D$ by $f(c)=(a, b, c)$. This function is one-to-one since if $c$ and $c^{\prime}$ are elements of $C$ and $c \neq c^{\prime}$, then $f(c)=(a, b, c) \neq\left(a, b, c^{\prime}\right)=f\left(c^{\prime}\right)$. By Theorem $12, D$ is uncountably infinite.
4. [20] Using no other asymptotic dominance theory than definitions, prove that $1+2 n+3 n^{2}+4 n^{3}=\mathrm{O}\left(n^{3}\right)$.

Let $M=10$ and $N=1$. For $n \geq N=1$, we have

$$
\left|1+2 n+3 n^{2}+4 n^{3}\right|=1+2 n+3 n^{2}+4 n^{3} \leq 1 n^{3}+2 n^{3}+3 n^{3}+4 n^{3}=10 n^{3}=M\left|n^{3}\right| .
$$

We conclude $1+2 n+3 n^{2}+4 n^{3}=\mathrm{O}\left(n^{3}\right)$.
5. [20] Prove that if $f_{1}=o(g)$ and $f_{2}=o(g)$ then $f_{1}+f_{2}=o(g)$. (Hint: $\varepsilon=\frac{\varepsilon}{2}+\frac{\varepsilon}{2}$.)

If $f_{1}=o(g)$ then for if $\varepsilon$ is positive then so is $\frac{\varepsilon}{2}$, so there exists $N_{1}$ so that $n \geq N_{1}$ guarantees $\left|f_{1}(n)\right| \leq \frac{\varepsilon}{2}|g(n)|$. Similarly, there exists $N_{2}$ so that $n \geq N_{2}$ guarantees $\left|f_{2}(n)\right| \leq \frac{\varepsilon}{2}|g(n)|$. Combining these we have for
$n \geq \max \left\{N_{1}, N_{2}\right\}\left|f_{1}(n)+f_{2}(n)\right| \leq\left|f_{1}(n)\right|+\left|f_{2}(n)\right| \leq \frac{\varepsilon}{2}|g(n)|+\frac{\varepsilon}{2}|g(n)|=\varepsilon|g(n)|$.
We conclude that $f_{1}+f_{2}=o(g)$.
6. [20] Prove that if $0<a<b$, then $b^{n} \neq \mathrm{O}\left(a^{n}\right)$.

Given $M \geq 0$ and $N \geq 0$, let $\bar{M}=\max \{M, 1\}$ thus $\bar{M} \geq M$ and $\ln (\bar{M}) \geq 0$. Notice that $\ln \left(\frac{b}{a}\right)>0$ and choose $n=\max \left\{N,\left[\frac{\ln (\overline{M)}}{\ln \left(\frac{b}{a}\right)}\right]\right\}+1$. For this $n$ we have $n>\frac{\ln (\bar{M})}{\ln \left(\frac{b}{a}\right)}$, thus $n \ln \left(\frac{b}{a}\right)>\ln (\bar{M})$ and $\left(\frac{b}{a}\right)^{n}>\bar{M} \geq M$. But then $\left|b^{n}\right|=b^{n}>M a^{n}=M\left|a^{n}\right|$ so $b^{n} \neq \mathrm{O}\left(a^{n}\right)$.

