Examination 2

Solutions

1. [20] Using only Definition 2', show that the set of negative integers is infinite.

Let A be the set of negative integers and define $f : A \to A$ by f(a) = a - 1 for $a \in A$. If $a_1, a_2 \in A$ and $a_1 \neq a_2$ then $f(a_1) = a_1 - 1 \neq a_2 - 2 = f(a_2)$, so f is one to one. The integer -1 is negative but for no negative integer a is a - 1 = -1 so f maps A to a proper subset of itself and A is infinite.

2. [20] Suppose the set A is uncountably infinite, the set B is countably infinite, and the set C is finite. Let $D = A \cup B \cup C$. Is D finite, countably infinite, or uncountably infinite? Prove your claim.

The set $D = A \cup B \cup C$ is a superset of A. By Corollary 9.1 it is uncountably infinite.

3. [20] Suppose the set A is non-empty and the set B is uncountably infinite. Prove that the cartesian product $A \times B$ is uncountably infinite.

Choose $\overline{a} \in A$ and define $f: B \to A \times B$ by $f(b) = (\overline{a}, b)$ for all $b \in B$. We see f is one-to-one since for $b_1 \neq b_2$, $f(b_1) = (\overline{a}, b_1) \neq (\overline{a}, b_2) = f(b_2)$. By Theorem 10, $A \times B$ is uncountably infinite.

4. [20] Using only Definition 1, prove that $3n^4 = O(n^{4.5})$.

Let M = 3 and N = 1. For $n \ge N = 1$, we have $\sqrt{n} \ge 1$, so $|3n^4| \le 3 n^4 \sqrt{n} = 3 |n^{4.5}|$. Thus $3n^4 = O(n^{4.5})$.

5. [20] Using only Definition 2, prove that $5^n \neq o(2 \cdot 4^n)$.

Let $\varepsilon = 1/4$ and suppose there exists N so that for all $n \ge N$, $|5^n| \le \varepsilon |2 \cdot 4^n|$. But for $n = \max\{1, \lceil N \rceil\}$, we have $n \ge N$ and $n \ge 1$, so $(\frac{5}{4})^n > 1$ and $5^n > 4^n$, thus $|5^n| = 5^n > 4^n = 1/2 |2 \cdot 4^n| = \varepsilon |2 \cdot 4^n|$ and $5^n \ne o(2 \cdot 4^n)$.

6. [20] Suppose f = O(g) and g = O(h), prove or disprove (with a simple counterexample) that f = O(h).

Suppose f = O(g) and g = O(h), then by definition, there exist $N_f \ge 0$, $M_f \ge 0$, $N_g \ge 0$, $M_g \ge 0$, so that for $n \ge N_f$, $|f(n)| \le M_f |g(n)|$ and for $n \ge N_g$, $|g(n)| \le M_g |h(n)|$. Thus for $n \ge \max\{N_f, N_g\}$, $|f(n)| \le M_f M_g |h(n)|$. We may conclude that f = O(h).