Examination 2

1. [20] Using only Definition 2^{\prime}, show that the set of negative integers is infinite.

Let A be the set of negative integers and define $f: A \rightarrow A$ by $f(a)=a-1$ for $a \in A$. If $a_{1}, a_{2} \in A$ and $a_{1} \neq a_{2}$ then $f\left(a_{1}\right)=a_{1}-1 \neq a_{2}-2=f\left(a_{2}\right)$, so f is one to one. The integer -1 is negative but for no negative integer a is $a-1=-1$ so f maps A to a proper subset of itself and A is infinite.
2. [20] Suppose the set A is uncountably infinite, the set B is countably infinite, and the set C is finite. Let $D=A \cup B \cup C$. Is D finite, countably infinite, or uncountably infinite? Prove your claim.

The set $D=A \cup B \cup C$ is a superset of A. By Corollary 9.1 it is uncountably infinite.
3. [20] Suppose the set A is non-empty and the set B is uncountably infinite. Prove that the cartesian product $A \times B$ is uncountably infinite.

Choose $\bar{a} \in A$ and define $f: B \rightarrow A \times B$ by $f(b)=(\bar{a}, b)$ for all $b \in B$. We see f is one-to-one since for $b_{1} \neq b_{2}, f\left(b_{1}\right)=\left(\bar{a}, b_{1}\right) \neq\left(\bar{a}, b_{2}\right)=f\left(b_{2}\right)$. By Theroem $10, A \times B$ is uncountably infinite.
4. [20] Using only Definition 1 , prove that $3 n^{4}=\mathrm{O}\left(n^{4.5}\right)$.

Let $M=3$ and $N=1$. For $n \geq N=1$, we have $\sqrt{n} \geq 1$, so $\left|3 n^{4}\right| \leq 3 n^{4} \sqrt{n}=3\left|n^{4.5}\right|$. Thus $3 n^{4}=\mathrm{O}\left(n^{4.5}\right)$.
5. [20] Using only Definition 2 , prove that $5^{n} \neq o\left(2 \cdot 4^{n}\right)$.

Let $\varepsilon=1 / 4$ and suppose there exists N so that for all $n \geq N,\left|5^{n}\right| \leq \varepsilon\left|2 \cdot 4^{n}\right|$. But for $n=\max \left\{1,\lceil N\rceil\right.$, we have $n \geq N$ and $n \geq 1$, so $\left(\frac{5}{4}\right)^{n}>1$ and $5^{n}>4^{n}$, thus $\left|5^{n}\right|=5^{n}>4^{n}=1 / 2\left|2 \cdot 4^{n}\right|=\varepsilon\left|2 \cdot 4^{n}\right|$ and $5^{n} \neq o\left(2 \cdot 4^{n}\right)$.
6. [20] Suppose $f=\mathrm{O}(g)$ and $g=\mathrm{O}(h)$, prove or disprove (with a simple counterexample) that $f=\mathrm{O}(h)$.

Suppose $f=\mathrm{O}(g)$ and $g=\mathrm{O}(h)$, then by definition, there exist $N_{f} \geq 0, M_{f} \geq 0, N_{g} \geq 0, M_{g} \geq 0$, so that for $n \geq N_{f},|f(n)| \leq M_{f}|g(n)|$ and for $n \geq N_{g},|g(n)| \leq M_{g}|h(n)|$. Thus for $n \geq \max \left\{N_{f}, N_{g}\right\},|f(n)| \leq M_{f} M_{g}|h(n)|$.We may conclude that $f=\mathrm{O}(h)$.

