Name	

Examination 2

CS 336

1	
2	
3	
4	
5	
6	
Total	

- 1. The important issue is the logic you used to arrive at your answer.
- 2. Use extra paper to determine your solutions then neatly transcribe them onto these sheets.
 - 3. Do not submit the scratch sheets. However, all of the logic necessary to obtain the solution should be on these sheets.
 - 4. Comment on all logical flaws and omissions and enclose the comments in boxes
- 1. [20] Using only Definition 2', show that the set of negative integers is infinite.
- 2. **[20]** Suppose the set A is uncountably infinite, the set B is countably infinite, and the set C is finite. Let $D = A \cup B \cup C$. Is D finite, countably infinite, or uncountably infinite? Prove your claim.
- 3. **[20]** Suppose the set A is non-empty and the set B is uncountably infinite. Prove that the cartesian product $A \times B$ is uncountably infinite.
- 4. [20] Using only Definition 1, prove that $3n^4 = O(n^{4.5})$.
- 5. [20] Using only Definition 2, prove that $5^n \neq o(2 \cdot 4^n)$.
- 6. [20] Suppose f = O(g) and g = O(h), prove or disprove (with a simple counter-example) that f = O(h).