Examination 2 Solutions

1. [20] Using only Definition 2^{\prime}, show that the set positive, integral multiples of three (i.e., $\{3,6,9, \ldots\}=\{3 k \mid k \in N$ and $k \geq 1\})$ is infinite.

Let $A=\{3 k \mid k \in \mathrm{~N}$ and $k \geq 1\}$ and consider $f: A \rightarrow A$ defined by $f(a)=a+3$ for $a \in A$. This function maps A into A since $a \in A \Rightarrow a+3 \in A$. Furthermore, this function is one-to-one since for $a, b \in A$, if $a \neq b$, then $f(a)=a+3 \neq b+3=f(b)$. The function f maps A into a proper subset of itself since $3 \in A$, but if $f(a)=a+3=3$, then $a=0$ but $0 \notin A$. We conclude no element of A maps to 3. By Definition 2', A is infinite
2. [20] Consider the set $A=\{(p, q, r) \mid p, q, r \in \mathrm{~N}\}$ (i.e., ordered triples of natural numbers). Is A finite, countably infinite, or uncountably infinite? Prove your claim.

The set A is countably infinite. Recognize that $A=\mathrm{N} \times \mathrm{N} \times \mathrm{N}$. By Corollary 10.3 $\mathrm{N} \times \mathrm{N}$ is countably infinite and using it once more $\mathrm{N} \times \mathrm{N} \times \mathrm{N}=(\mathrm{N} \times \mathrm{N}) \times \mathrm{N}$ is counyably infinite.
3. [20] Show that the set of points in the square
$B=\{(x, y) \mid-1 / 2 \leq x \leq 1 / 2$ and $1 \leq y \leq 2\}$ is uncountably infinite.

Consider the mapping $f:[0,1] \rightarrow B$ defined by $f(x)=(x-1 / 2,1)$. If $0 \leq x \leq 1$, then $-1 / 2 \leq x-1 / 2 \leq 1 / 2$ and $1 \leq 1 \leq 2$ and thus f does map $[0,1]$ into B. The function is one-to-one since if $x_{1}, x_{2} \in[0,1]$:

$$
f\left(x_{1}\right)=\left(x_{1}-1 / 2,1\right) \neq\left(x_{2}-1 / 2,1\right)=f\left(x_{2}\right)
$$

By Theorem 11, B is uncountably infinite since $[0,1]$ is.
4. [20] Using only Definition 1, prove that for any $a \geq 0, n^{4}=\mathrm{O}\left(n^{4.01}\right)$.

We use $M=1$ and $N=0$. For $n \geq 0, n^{-01} \leq n^{0}=1$, and $\left|n^{4}\right|=\left|n^{-.01} n^{4.01}\right|=\left|n^{-.01}\right|\left|n^{4.01}\right| \leq 1 \cdot\left|n^{4.01}\right|$. Therefore, $n^{4}=\mathrm{O}\left(n^{4.01}\right)$.
5. [20] Given $f=\mathrm{O}(g)$ and $g=o(b)$, either proof that $f=o(b)$ or construct a simple counterexample to prove that f is not necessarily $o(b)$.

Since $f=\mathbf{O}(g)$, there exist M_{1} and N_{1} so that $n \geq N_{1} \Rightarrow|f(n)| \leq M_{1}|g(n)|$.
Given $\varepsilon>0$, let $\mathcal{E}^{\prime}=\varepsilon / M_{1}$. Since $g=o(b)$, there exist N_{2} such that $n \geq N_{2} \Rightarrow|g(n)| \leq \varepsilon^{\prime}|b(n)|=\varepsilon / M_{1}|b(n)|$. Thus letting $N=\max \left\{N_{1}, N_{2}\right\}$, for $n \geq N$ we have $|f(n)| \leq M_{1}|g(n)| \leq M_{1} \varepsilon / M_{1}|h(n)|=\varepsilon|h(n)|$ so $f=o(h)$.
6. [20] Prove that for $0<b<a, a^{n} \neq \mathrm{O}\left(b^{n}\right)$.

Given any non-negative constants M and N, choose $n=\max \{N, \ln M / \ln (a / b)+1\}$, then $n \geq N$ and $n>\ln M / \ln (a / b)$. We then have $\ln (a / b)^{n}=n \ln (a / b)>\ln M$ so $a^{n} / b^{n}=(a / b)^{n}>\ln M$. We conclude that $\left|a^{n}\right|>\ln M\left|b^{n}\right|$.

