Examination 2 Solutions

CS 336

1. [20] Using only Definition 2', show that the set positive, integral multiples of three (i.e., $\{3, 6, 9, ...\} = \{3k \mid k \in \mathbb{N} \text{ and } k \ge 1\}$) is infinite.

Let $A = \{3k \mid k \in \mathbb{N} \text{ and } k \ge 1\}$ and consider $f : A \to A$ defined by f(a) = a + 3 for $a \in A$. This function maps A into A since $a \in A \Rightarrow a + 3 \in A$. Furthermore, this function is one-to-one since for $a, b \in A$, if $a \ne b$, then $f(a) = a + 3 \ne b + 3 = f(b)$. The function f maps A into a proper subset of itself since $3 \in A$, but if f(a) = a + 3 = 3, then a = 0 but $0 \notin A$. We conclude no element of A maps to 3. By Definition 2', A is infinite

2. [20] Consider the set $A = \{(p,q,r) | p,q,r \in \mathbb{N}\}$ (i.e., ordered triples of natural numbers). Is A finite, countably infinite, or uncountably infinite? Prove your claim.

The set A is countably infinite. Recognize that $A = N \times N \times N$. By Corollary 10.3 $N \times N$ is countably infinite and using it once more $N \times N \times N = (N \times N) \times N$ is counyably infinite.

3. [20] Show that the set of points in the square $B = \{(x, y) | -1/2 \le x \le 1/2 \text{ and } 1 \le y \le 2\}$ is uncountably infinite.

Consider the mapping $f:[0,1] \rightarrow B$ defined by f(x) = (x-1/2,1). If $0 \le x \le 1$, then $-1/2 \le x - 1/2 \le 1/2$ and $1 \le 1 \le 2$ and thus f does map [0,1] into B. The function is one-to-one since if $x_1, x_2 \in [0,1]$:

 $f(x_1) = (x_1 - 1/2, 1) \neq (x_2 - 1/2, 1) = f(x_2)$ By Theorem 11, *B* is uncountably infinite since [0,1] is.

4. [20] Using only Definition 1, prove that for any $a \ge 0$, $n^4 = O(n^{4.01})$.

We use M = 1 and N = 0. For $n \ge 0$, $n^{-.01} \le n^0 = 1$, and $|n^4| = |n^{-.01} n^{4.01}| = |n^{-.01}| |n^{4.01}| \le 1 \cdot |n^{4.01}|$. Therefore, $n^4 = O(n^{4.01})$.

5. [20] Given f = O(g) and g = o(h), either proof that f = o(h) or construct a simple counterexample to prove that f is not necessarily o(h).

Since f = O(g), there exist M_1 and N_1 so that $n \ge N_1 \Rightarrow |f(n)| \le M_1 |g(n)|$. Given $\varepsilon > 0$, let $\varepsilon' = \varepsilon / M_1$. Since g = o(b), there exist N_2 such that $n \ge N_2 \Rightarrow |g(n)| \le \varepsilon' |b(n)| = \varepsilon / M_1 |b(n)|$. Thus letting $N = \max\{N_1, N_2\}$, for $n \ge N$ we have $|f(n)| \le M_1 |g(n)| \le M_1 \varepsilon / M_1 |b(n)| = \varepsilon |b(n)|$ so f = o(h). 6. **[20]** Prove that for 0 < b < a, $a^n \neq O(b^n)$.

Given any non-negative constants M and N, choose $n = \max\{N, \ln M / \ln(a/b) + 1\}$, then $n \ge N$ and $n > \ln M / \ln(a/b)$. We then have $\ln(a/b)^n = n \ln(a/b) > \ln M$ so $a^n / b^n = (a/b)^n > \ln M$. We conclude that $|a^n| > \ln M | b^n|$.