Examination 2 Solutions

1. [20] Using only Definition 2', show that the set of odd integers (i.e., $\{..., -3, -1, 1, 3, ...\}$ is infinite.

Let $A = \{2k+1 | k \in \mathbb{Z}\}$ and consider $f : A \to A$ defined by $f(a) = \begin{cases} a & a < 0 \\ a+2 & a > 0 \end{cases}$ for $a \in A$. To show this function is one-to-one consider $a, b \in A$: if $a \neq b$, then either a, b < 0, a < 0 < b, or a, b > 0. If a, b < 0, $f(a) = a \neq b = f(b)$. If a < 0 < b, f(a) = a < b < b+2 = f(b). Finally, if a, b > 0, $f(a) = a + 2 \neq b + 2 = f(b)$. Thus, f is one-to-one. Lastly, the function f maps A into a proper subset of itself since $1 \in A$, but if f(a) = 1, then either a < 0 in which case f(a) = a < 0 < 1, or a > 0 in which case f(a) = a + 2 > 2 > 1. Either of these leads to a contradiction, so we conclude no element of A maps to 1.

2. [20] Suppose the set U is uncountably infinite, the set V is countable and W is the set difference $U \sim V$. Prove or disprove (with a simple counter example):

W is uncountably infinite.

Since $W = U \sim V$, we have $U = W \cup V$. If W were countable then U would be the union of two countable sets. By Corollary 10.1, U would also be countable contrary to hypothesis. We conclude that W is uncountably infinite.

3. [20] Prove that the set of complex numbers $C = \{x + iy \mid x, y \in \mathbb{R}\}$ is uncountably infinite.

Consider the mapping $f:[0,1] \rightarrow C$ defined by f(x) = x + 0i. The function is one-to-one since if $x \in [0,1]$, $f(x) = x + 0i \neq y + 0i = f(y)$. By Theorem 11, C is uncountably infinite since [0,1] is.

4. [20] Using only Definition 1, prove that $1 + 2n + 3n^2 = O(n^2)$.

We use M = 6 and N = 1. For $n \ge 1$, $1 \le n \le n^2$, and $|1 + 2n + 3n^2| = 1 + 2n + 3n^2 \le 6n^2 = 6|n^2|$. Therefore, $1 + 2n + 3n^2 = O(n^2)$.

5. [20] Given that a function $f : \mathbb{N} \to \mathbb{R}$ assumes only positive values (i.e., f(n) > 0 for all $n \in \mathbb{N}$) and that $f^2 = O(f)$ prove that f = O(1).

Since $f^2 = O(f)$ we have that for some M and N, $n \ge N \Rightarrow |f(n)^2 |\le M |f(n)|$. We also have that $f(n) \ne 0$, so we may divide by f(n), thus $n \ge N \Rightarrow |f(n)| \le M |1|$ and we conclude that f = O(1).

6. **[20]** Prove that for $0 < a < 1, a^n \neq O(a^{2n})$.

Given any non-negative constants M and N, notice that $a^{-1} > 1$ and choose $n = \max\{N, \log(M) / \log(a^{-1}) + 1\}$, then $n \ge N$ and $n > \log(M) / \log(a^{-1}) + 1$. We then have $\log(a^{-1})^n = n \log(a^{-1}) > \log M$ so $a^{-n} > M$ and $|a^n| = a^n > Ma^{2n} = M |a^{2n}|$. We conclude that $a^n \ne O(a^{2n})$.