
Examination 2  Solutions 
 
 

1. [20] Using only Definition 2', show that the set of odd integers  (i.e., {…, -3, -1, 1, 3, …} 
is infinite.  
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 into a proper subset of itself since A ∈1 , but if A =( ) 1f a , then either   in 
which case 
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these leads to a contradiction, so we conclude no element of  maps to 1. A
 
2. [20] Suppose the set U  is uncountably infinite, the set V  is countable and W  is the set 
difference U .  Prove or disprove (with a simple counter example): V∼
 

W is uncountably infinite. 
 

Since  W U we have U W~V= , V= ∪ .  If W  were countable then U  would be the 
union of two countable sets.  By Corollary 10.1 ,U  would also be countable contrary to 
hypothesis. We conclude that W is uncountably infinite. 

 
3. [20] Prove that the set of complex numbers = + ∈R{ | ,iy x y }C x  is uncountably 
infinite.  
 

Consider the mapping : [0,1]f C→  defined by = +( ) 0f x x i .  The function is 
one-to-one since if , ∈[0,1]x = + ≠0 + =0 ( )( )f x x i y i f y .  By Theorem 11, C  is 
uncountably infinite since [  is. 0,1]

 
4. [20] Using only Definition 1, prove that 1 2 . + + = Ο2 23 ( )n n n
 

We use = 6M  and .  For , = 1N 1n ≥ ≤ ≤ 21 n n , and 
+ + = + ≤1 2 1 6+2 22 3n n =2 6n 2n3n n . Therefore, 1 2 .  + + = Ο2 23 ( )n n n

 
5. [20] Given  that a function  assumes only positive values  (i.e.,   for 
all ) and that 
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Since = Ο2 ( )f f  we have that for some M  and ,  We 
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6. [20] Prove that for , . < <0 1a ≠ Ο 2( )n na a
 

Given any non-negative constants M  and , notice that a  and choose 
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