Examination 2 Solutions

1. [20] Using only Definition 2', show that the set of odd integers (i.e., $\{\ldots,-3,-1,1,3, \ldots\}$ is infinite.

Let $A=\{2 k+1 \mid k \in \mathbb{Z}\}$ and consider $f: A \rightarrow A$ defined by $f(a)=\left\{\begin{array}{cc}a & a<0 \\ a+2 & a>0\end{array}\right.$
for $a \in A$. To show this function is one-to-one consider $a, b \in A:$ if $a \neq b$, then either $a, b<0, a<0<b$, or $a, b>0$. If $a, b<0, f(a)=a \neq b=f(b)$. If $a<0<b, f(a)=a<b<b+2=f(b)$. Finally, if $a, b>0$, $f(a)=a+2 \neq b+2=f(b)$. Thus, f is one-to-one. Lastly, the function f maps A into a proper subset of itself since $1 \in A$, but if $f(a)=1$, then either $a<0$ in which case $f(a)=a<0<1$, or $a>0$ in which case $f(a)=a+2>2>1$. Either of these leads to a contradiction, so we conclude no element of A maps to 1 .
2. [20] Suppose the set U is uncountably infinite, the set V is countable and W is the set difference $U \sim V$. Prove or disprove (with a simple counter example):
W is uncountably infinite.
Since $W=U \sim V$, we have $U=W \cup V$. If W were countable then U would be the union of two countable sets. By Corollary $10.1, U$ would also be countable contrary to hypothesis. We conclude that W is uncountably infinite.
3. [20] Prove that the set of complex numbers $C=\{x+i y \mid x, y \in \mathbb{R}\}$ is uncountably infinite.

Consider the mapping $f:[0,1] \rightarrow C$ defined by $f(x)=x+0 i$. The function is one-to-one since if $x \in[0,1], f(x)=x+0 i \neq y+0 i=f(y)$. By Theorem 11, C is uncountably infinite since $[0,1]$ is.
4. [20] Using only Definition 1, prove that $1+2 n+3 n^{2}=\mathrm{O}\left(n^{2}\right)$.

We use $M=6$ and $N=1$. For $n \geq 1,1 \leq n \leq n^{2}$, and

$$
\left|1+2 n+3 n^{2}\right|=1+2 n+3 n^{2} \leq 6 n^{2}=6\left|n^{2}\right| . \text { Therefore, } 1+2 n+3 n^{2}=\mathrm{O}\left(n^{2}\right) .
$$

5. [20] Given that a function $f: \mathbb{N} \rightarrow \mathbb{R}$ assumes only positive values (i.e., $f(n)>0$ for all $n \in \mathbb{N}$) and that $f^{2}=\mathrm{O}(f)$ prove that $f=\mathrm{O}(1)$.

Since $f^{2}=\mathrm{O}(f)$ we have that for some M and $N, n \geq N \Rightarrow\left|f(n)^{2}\right| \leq M|f(n)|$. We also have that $f(n) \neq 0$, so we may divide by $f(n)$, thus $n \geq N \Rightarrow|f(n)| \leq M|1|$ and we conclude that $f=\mathrm{O}(1)$.
6. [20] Prove that for $0<a<1, a^{n} \neq \mathrm{O}\left(a^{2 n}\right)$.

Given any non-negative constants M and N, notice that $a^{-1}>1$ and choose $n=\max \left\{N, \log (M) / \log \left(a^{-1}\right)+1\right\}$, then $n \geq N$ and $n>\log (M) / \log \left(a^{-1}\right)+1$. We then have $\log \left(a^{-1}\right)^{n}=n \log \left(a^{-1}\right)>\log M$ so $a^{-n}>M$ and $\left|a^{n}\right|=a^{n}>M a^{2 n}=M\left|a^{2 n}\right|$. We conclude that $a^{n} \neq \mathrm{O}\left(a^{2 n}\right)$.

