Examination 2 Solutions

1. [20] Using only Definition 2', prove that the set of finitely long bit strings is infinite.

Let $S=$ set of finitely long bit strings. For $s \in S$, define $f: S \rightarrow S$ by $f(s)=0 \mid s$ (i.e. the string consisting of 0 concatenated with s). For $s, t \in S$, if $s \neq t$, then $f(s)=0|s \neq 0| t=f(t)$, so f is one-to-one. Let $u=<1>$. Since for all $s \in S$ the first element of $f(s)$ is an 0 , there is no $s \in S$ such that $f(s)=u$. We have then that f maps S into $S \sim\{u\}$, which is a proper subset of S, and by Definition 2', S is infinite.
2. [20] Suppose operating system \mathbf{S} allows passwords of 6 or more characters from the set $\{A, \ldots, Z, a, \ldots z, 0, \ldots, 9, \ldots\}$ and no others. Is the set of legal passwords finite, countably infinite, or uncountably infinite? Prove your claim.

The set is countably infinite. Let P denote the set of finitely long strings using characters from $\{A, \ldots, Z, a, \ldots z, 0, \ldots, 9$,$\} and for n \geq 6, \mathrm{P}_{n}$ be the set of strings using characters from $\{A, \ldots, Z, a, \ldots z, 0, \ldots, 9, \ldots\}$ of length n. Each set P_{n} is finite (in fact, having cardinality 63^{n}) and $\mathrm{P}=\bigcup_{n=6}^{\infty} \mathrm{P}_{n}=\bigcup_{n \in \mathbb{N}} \mathrm{P}_{n+6}$. Since P is the countably infinite union of finite sets, by Theorem 9, it is countable. Finally consider the mapping $f: \mathbb{N} \rightarrow \mathrm{P}$ defined by $f(n)=<A \ldots A>$ having length $n+6$ for $n \in \mathbb{N}$. This function is clearly one-to-one since if $n \neq m, f(n) \neq f(m)$ since they have different lengths. By Theorem 4, P is infinite, hence countably infinite.
3. [20] Is the set of circles in the plane finite, countably infinite, or uncountably infinite? Prove your claim.

The set is uncountably infinite. Let \mathbb{C} denote the set of circles in the plane and consider $f:[0,1] \rightarrow \mathbb{C}$ defined by $f(x)$ is the circle or radius 1 with center $(x, 0)$. This function is one-to-one since if x and y are elements of $[0,1]$ and $x<y$, then the circle $f(x)$ contains the point $(x-1,0)$ but the circle $f(y)$ does not contain that point since the distance from $(x-1,0)$ to $(y, 0)$ is $y-x+1$ which is greater than Thus, f is one-to-one and since the interval $[0,1]$ is uncountably infinite, by Theorem 11 , the set \mathbb{C} is uncountably infinite.
4. [20] Using no other asymptotic dominance theory than definitions, prove that $6 n^{7 / 8}+5 n^{3 / 2}=\mathrm{O}\left(n^{2}\right)$.

Let $M=11$ and $N=1$. For $n \geq N$, we have $n^{7 / 8} \leq n^{3 / 2} \leq n^{2}$, so $\left|6 n^{7 / 8}+5 n^{3 / 2}\right|=6 n^{7 / 8}+5 n^{3 / 2} \leq 6 n^{2}+5 n^{2}=11 n^{2}=M\left|n^{2}\right|$. Therefore, $6 n^{7 / 8}+5 n^{3 / 2}=\mathrm{O}\left(n^{2}\right)$.
5. [20] Employing induction prove that for $k \geq 1$, if for $i=1,2, \ldots, k, f_{i}=\mathrm{O}\left(f_{i+1}\right)$, then $f_{1}=\mathrm{O}\left(f_{k+1}\right)$.

For $k=1$, we have $f_{1}=\mathbf{O}\left(f_{2}\right)$ thus $f_{1}=\mathbf{O}\left(f_{2}\right)=\mathbf{O}\left(f_{k+1}\right)$. Let us assume the result is true for some $k \geq 1$, and attempt to prove that if for $i=1,2, \ldots, k+1, f_{i}=\mathrm{O}\left(f_{i+1}\right)$, then $f_{1}=\mathrm{O}\left(f_{k+2}\right)$. By the inductive hypothesis we have $f_{1}=\mathrm{O}\left(f_{k+1}\right)$ and we also know $f_{k+1}=\mathrm{O}\left(f_{k+2}\right)$. By definition, there exist M, \bar{M}, N, and \bar{N}, so that for $n \geq N,\left|f_{1}(n)\right| \leq M\left|f_{k+1}(n)\right| \quad$ and \quad for $\quad n \geq \bar{N},\left|f_{k+1}(n)\right| \leq \bar{M}\left|f_{k+2}(n)\right|$. Thus for $n \geq \overline{\bar{N}}=\max \{N, \bar{N}\},\left|f_{1}(n)\right| \leq M\left|f_{k+1}(n)\right| \leq M \bar{M}\left|f_{k+2}(n)\right|$, so $f_{1}=\mathrm{O}\left(f_{k+2}\right)$.
6. [20] Prove that $2^{n}=o(n!)$. (Hint: $\prod_{i=1}^{n} \frac{2}{i}=\prod_{i=1}^{3} \frac{2}{i} \cdot \prod_{i=4}^{n} \frac{2}{i}=\frac{4}{3} \prod_{i=4}^{n} \frac{2}{i}$ and $\frac{2}{i} \leq \frac{1}{2}$ for $i \geq 4$.)

Given any $\varepsilon>0$, let $N=\max \left\{1, \log _{2} \frac{32}{3 \varepsilon}\right\}$. Notice then for $n \geq N$, we have $2^{n} \geq \frac{32}{3 \varepsilon}=\frac{4}{3} \frac{8}{\varepsilon}$, so

$$
\varepsilon \geq \frac{4}{3} 8\left(\frac{1}{2}\right)^{n}=\frac{4}{3}\left(\frac{1}{2}\right)^{n-3}=\frac{4}{3} \prod_{i=4}^{n} \frac{1}{2} \geq \frac{4}{3} \prod_{i=4}^{n} \frac{2}{i}=\prod_{i=1}^{n} \frac{2}{i}=\frac{\prod_{i=1}^{n} 2}{\prod_{i=1}^{n} i}=\frac{2^{n}}{n!} .
$$

and $\left|2^{n}\right|=2^{n} \leq \varepsilon n!=\varepsilon|n!|$. Therefore, $2^{n}=o(n!)$.

