1. [20] Using only Definition 2', prove that the set of finitely long bit strings is infinite.

Let S = set of finitely long bit strings. For $s \in S$, define $f: S \to S$ by $f(s) = 0 \mid s$ (i.e. the string consisting of 0 concatenated with s). For $s, t \in S$, if $s \neq t$, then $f(s) = 0 \mid s \neq 0 \mid t = f(t)$, so f is one-to-one. Let u = <1>. Since for all $s \in S$ the first element of f(s) is an 0, there is no $s \in S$ such that f(s) = u. We have then that f maps S into $S \sim \{u\}$, which is a proper subset of S, and by Definition 2', S is infinite.

2. [20] Suppose operating system **S** allows passwords of 6 or more characters from the set $\{A,...,Z,a,...z,0,...,9,_\}$ and no others. Is the set of legal passwords finite, countably infinite, or uncountably infinite? Prove your claim.

The set is countably infinite. Let P denote the set of finitely long strings using characters from $\{A,...,Z,a,...z,0,...,9,_\}$ and for $n \ge 6$, P_n be the set of strings using characters from $\{A,...,Z,a,...z,0,...,9,_\}$ of length n. Each set P_n is finite (in

fact, having cardinality 63^n) and $P = \bigcup_{n=6}^{\infty} P_n = \bigcup_{n \in \mathbb{N}} P_{n+6}$. Since P is the countably

infinite union of finite sets, by Theorem 9, it is countable. Finally consider the mapping $f: \mathbb{N} \to P$ defined by $f(n) = \langle A...A \rangle$ having length n+6 for $n \in \mathbb{N}$. This function is clearly one-to-one since if $n \neq m$, $f(n) \neq f(m)$ since they have different lengths. By Theorem 4, P is infinite, hence countably infinite.

3. [20] Is the set of circles in the plane finite, countably infinite, or uncountably infinite? Prove your claim.

The set is uncountably infinite. Let \mathbb{C} denote the set of circles in the plane and consider $f:[0,1] \to \mathbb{C}$ defined by f(x) is the circle or radius 1 with center (x,0). This function is one-to-one since if x and y are elements of [0,1] and x < y, then the circle f(x) contains the point (x-1,0) but the circle f(y) does not contain that point since the distance from (x-1,0) to (y,0) is y-x+1 which is greater than Thus, f is one-to-one and since the interval [0,1] is uncountably infinite, by Theorem 11, the set \mathbb{C} is uncountably infinite.

4. [20] Using no other asymptotic dominance theory than definitions, prove that $6n^{7/8} + 5n^{3/2} = O(n^2)$.

Let
$$M = 11$$
 and $N = 1$. For $n \ge N$, we have $n^{7/8} \le n^{3/2} \le n^2$, so $|6n^{7/8} + 5n^{3/2}| = 6n^{7/8} + 5n^{3/2} \le 6n^2 + 5n^2 = 11n^2 = M|n^2|$. Therefore, $6n^{7/8} + 5n^{3/2} = O(n^2)$.

5. [20] Employing induction prove that for $k \ge 1$, if for i = 1, 2, ..., k, $f_i = O(f_{i+1})$, then $f_1 = O(f_{k+1})$.

For k=1, we have $f_1=\mathrm{O}(f_2)$ thus $f_1=\mathrm{O}(f_2)=\mathrm{O}(f_{k+1})$. Let us assume the result is true for some $k\geq 1$, and attempt to prove that if for i=1,2,...,k+1, $f_i=\mathrm{O}(f_{i+1})$, then $f_1=\mathrm{O}(f_{k+2})$. By the inductive hypothesis we have $f_1=\mathrm{O}(f_{k+1})$ and we also know $f_{k+1}=\mathrm{O}(f_{k+2})$. By definition, there exist M,\overline{M},N , and \overline{N} , so that for $n\geq N$, $|f_1(n)|\leq M$, $|f_{k+1}(n)|$ and .for $n\geq \overline{N}$, $|f_{k+1}(n)|\leq \overline{M}$, $|f_{k+2}(n)|$. Thus for $n\geq \overline{N}=\max\{N,\overline{N}\}$, $|f_1(n)|\leq M$, $|f_{k+1}(n)|\leq M\overline{M}$, so $|f_{k+2}(n)|$, so $|f_1(n)|\leq M\overline{M}$.

6. [20] Prove that
$$2^n = o(n!)$$
. (Hint: $\prod_{i=1}^n \frac{2}{i} = \prod_{i=1}^3 \frac{2}{i} \cdot \prod_{i=4}^n \frac{2}{i} = \frac{4}{3} \prod_{i=4}^n \frac{2}{i}$ and $\frac{2}{i} \le \frac{1}{2}$ for $i \ge 4$.)

Given any $\varepsilon > 0$, let $N = \max\{1, \log_2 \frac{32}{3\varepsilon}\}$. Notice then for $n \ge N$, we have

$$2^n \ge \frac{32}{3\varepsilon} = \frac{48}{3\varepsilon}$$
, so

$$\varepsilon \ge \frac{4}{3}8\left(\frac{1}{2}\right)^n = \frac{4}{3}\left(\frac{1}{2}\right)^{n-3} = \frac{4}{3}\prod_{i=4}^n \frac{1}{2} \ge \frac{4}{3}\prod_{i=4}^n \frac{2}{i} = \prod_{i=1}^n \frac{2}{i} = \prod_{i=1}^n \frac{2}{i} = \frac{2^n}{n!}.$$

and $|2^n| = 2^n \le \varepsilon n! = \varepsilon |n!|$. Therefore, $2^n = o(n!)$.