CS 336
Final Examination Solutions

1.a.[5] Given | A En,|A |=n,,| A |=n,, and | B |= m, how many functions map
A" A" Ainto B?

The domain of such a function is a set of cardinality n, xn, x,. For a given func-
tion, there are m options for the value defined for each variable — thus there are
m™"™" such functions.

b. [5] How many such functions mapping A~ A~ A into B are one-to-one?

If m<n, xn, >, there are no one-to-one functions mapping A~ A" A into B . If
m3 n, xn, xn,, for a given function, there are m options for the value defined for a
first variable, m- 1 options for the value defined for a second variable, ..., and
m- n,n,n, +1 options for the value defined for a n,n,n,™ variable — thus there are
mxm- 1) x--Xm- nn,n,+1) such one-to-one functions.

2. a. [10] How many triples (i, j,k) of non-negative values i, j, and k satisfy
i+j+k£207?
(Hint: Consider a variable 1 =20- (i+] +k).)

Consider placing 20 indistinguishable balls into four bins labeled i,j k, and I.

Since the number of balls in the | bin is non-negative, each such placement corre-
sponds to a selection of a four-tuple {i,j k.| ) of non-negative values i,j k, and |
satisfying i +j +k+ 1 =20. But since | 3 0, this is equivalent to a selection of a tri-
ple {i,j,k) of non-negative values i, j, and K satisfying i+ j +k £20. There are

a@0+36

g 3 = such placements of 20 indistinguishable balls into four bins, therefore the
2

same number of triples <i,j ,k> of non-negative values i, j, and k satisfying
i+j+k £20.



b. [5] How many triples {i,j,k) of non-negative values i, j, and k satisfy
AEi +] +k £20?

a8 +20 e

For n=0,1,2,3, there are g 5 % such placements of n indistinguishable balls

2

into three bins, so there are 832+8§2+&42+8§2 triples (i,j ,k) of non-negative
25 824 &25 &25

3--
values i, j, and k satisfying i+ j +k < 4. Since there are BQS 2 triples (i,j k) of
2
non-negative values i, j, and k satisfying i +j +k £ 20, there are
3-- s I I s
o 0. a:}ZE 830’9 8849 8562 triples (i, j,k) of non-negative values i, j, and k
€35 &25 &2 &25 &2

satisfying 4 £i +j +k £20.



3. a. [10] Using a combinatorial argument, prove that for n3 m3 3;:

ano_ an- 30 a- 30880 aen 3oa§o an- 30

gmﬂ Em g gm 1@81;& &m - 2@82;& §m- 3,

Let A be aset of cardinality n- 3, B be a disjoint set of cardinality 3, and
C=AE B. Since A and B are disjoint, C has cardinality n. Consider the number
of subsets of C of cardinality m £ n. We select without order and without repeti-

tions so there are aerﬂng such subsets. Alternatively, there are four options corre-

2
sponding to the number of the elements in the subset that come from B zero, one,
two, or three. If there are zero elements in the subset that come from B, then all

aa- o0
elements come from A, so there are 8 - such subsets. If there is one element
m

in the subset that comes from B, then there are m- 1 elements that come from A,

an- 30 a30

so there are = ways to choose the elements from A and . = ways to choose
&m- 15 &1

the single element from B. If there are two elements in the subset that come from

aN- 30
B, then there are m- 2 elements that come from A, so there are 8 ot ways to
m-zg

a30
choose the elements from A and 82+ ways to choose the two elements from B.
(%

Finally, if there are three elements in the subset that come from B, then there are

m- 3 elements that come from A, so there are ;1 32 ways to choose the ele-
" 99
ments from A and one way to choose the three elements from B. Together then
an - 30 an- 3oa§o aan- 3oa§o an- 30

there are _subsets and this must equal
Em 5 gm 1zglﬂ gm Zzgzz &m- 35 |
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b. [10] Using a combinatorial argument, prove that for m,n, p3 0:

> %‘Io n- n

8 Geortt " =(m+p)

k=0 4]
Let A be aset of cardinality m, B be a disjoint set of cardinality p, and
C=AE B. Since A and B are disjoint, C has cardinality m+ p. Consider the

number of strings of length n selected from the integers C. For the right side, we
see there are n positions in the string each of which has m+ p options. We select

with order and allow repetition so there are (m+ p)" such strings. Alternatively,
let k indicate the number of positions in the string occupied by an element of A.

The value of k can vary from O to n. For a fixed value of k, there are §9 ways
2

to choose the positions for those elements and, with the positions fixed, there are
m choices for each of the k positions. Finally, the elements of B must occupy the
remaining n- k positions of the string and there are p choices for each of the

n- k positions. Thus, there aigmkp“"‘ such strings for a fixed value of k and

7]
o
a a@gmk p™* strings overall. This must equal (m+ p)".
k=08K g

4. a. [10] For n3 5, what is the probability that a string of n zeros and ones has exactly 5
ones. (You may assume all strings of n zeros and ones are equally probable.)

There are 2" equally likely strings of zeros and ones of length n. Of these there are

amo - .
- that have exactly 5 ones. Thus, probability that a string of n zeros and ones
%)

ano

&5

has exactly 5 ones is =—=.
2



b. [5] For n3 5, what is the probability that a string of n zeros and ones has exactly 5
ones given that it has at least three ones. (You may assume all strings of n zeros and ones
are equally probable.)

There is one string with no ones, there are nstrings with one one, and there are
o . . ano .
2+str|ngs with two ones, so there are 2"- 1- n- 5% equally likely that have at
[ 2
least three ones. All strings with five 1s have at least three 1s, so the number of

. e . amo .
strings with five ones and at least three ones is 5% Thus, the probability that a

(4]
string of n zeros and ones has exactly 5 ones given that it has at least three ones is
amo
&5
2-1-n-29
25

5. [10] Using definition 2' (and no cardinality theorems) prove that N” N, the set of or-
dered pairs of natural numbers, is infinite.

Consider the mapping f :N" N® N" N defined by f(i,j)=(i+1]). If

(i,)T N" N then (i+1 j)I N" N. For (i, j)T N" N and (i,, j,)] N” N with
(s, J)* (i, j,) theneither i, * i, or j;* j, and thus either i, +1 *i, +1or j,* J,.
In either case f (i, ]J,)=(0,+1j)* (i,+1,j,)=f(i,,],),s0 f isone-to-one.
However, for no element (i, j)T N” N is f (i, j) =(0,0) since that would imply

that i =-1. We conclude that f maps N” N one-to-one into a proper subsets of
itself, and thus is infinite.



6. [10] Is C, the set of infinitely long bit strings in which all even bits are zero, finite,
countably infinite or uncountably infinite? Prove your claim. (Please use the notation
<b,b,b,...> foran infinitely long bit string.)

Let B denote the set of infinitely long bit strings. From Theorem 6, B is uncount-
ably infinite. Define f:B® C by f(<b,b,b;,...>)=<Db,0,b,,0,b,,0,...>. This
function is one-to-one since if sand t are bit strings and s * t, then sand t must
differ in some position k, (one having a 0 and one having a 1). Then f(s) and f(t)

differ in bit position 2k- 1. Thus, f(s)* f(t) and f is one-to-one. By Theorem
12, C is uncountably infinite.

7.[10 ] Prove that for a>1 and 0<I| <1,a"* O(a'").

Given any non-negative constants M and N . Notice that M +1>0 and

0<1-1 <1.Take n:gmax{N,Mg.We have n3 N and
e (1-1)log(a)g
ns3 M,so nX1-1)log(a)? log(M +1)and a®'" 3 M +1> M. So
(1-1)log(a)

Ja"|=a"=a*" """ >Ma'"=M]a'"|and 2"t O(a'").
8. [10] . Prove Theorem 7: If a<Db, then n® =0 (n")

Given any e>0, let N=(1/e)¥®™? Notice then for n3 N=(1/e)Y®?,

n*231/e, and n®® £e.So |n? :|n‘('°‘a) nb| =|n“”‘a’ nb|£e |n'°|. There-

fore, n? =0 (n°).



9. [10] Assuming X and y are integer variables, prove correct with respect to precondition
“ y is defined” and postcondition “x 1 y™:

ify > 3 then
X =y+6
if x < 11 then
y:=11
endif
else
X:=y-2
=y-1
endif
y is defined
ify > 3 then y>3
X = y+6 .
(y>3)U(x= y+6)
xty
ifx<1lthen_ (x! y)U(x<11)
x<11l
y:=11  (y=11)U(x<1)
_ xty
endif (xt y)U(x* y)
Xty
else yE3
X=y2_ __ (yE3)U(x=y- 2)
X=y-2
y=yl__ (y=y-D)HUx=y"- 2
x=y-1
Xty
endif (xt y)U(x1y)

Xty




10. [10] Prove the following code is partially correct with respect to precondition “true”
and postcondition “x =1 (assume X is an integer variable.):

x:=0

while x =0do
x:=1

end

Be explicit about your loop invariant: | =

Usel=(x* 0) P (x=1])

true
x:=0 x=0
(x* 0P (x=)
while x =0 do (x=0)U((x* 0) P (x=1))
x:=1 x=1
(xt 0P (x=]
end (x1 Q)U((x* 0) P (x=1))

x=1




11. [10] Prove partial correctness with respect to precondition n3 1 and postcondition
p=m" (assume m, p, i, and n are integer variables and that m is defined.):

p:=1

=1

while i £n do
p:=mp
1:=1+1

end

Be explicit about your loop invariant: | =

Loop invariant: | =((p=m™*) U@ £ n+1))

nl
p:=1 p=1Un31
=1 i=1lUp=1Un31
p=m*U £n+1
while i £n do iEnUp=mrtUi£n+1
i£EnUp=m"!
p = m*p p=mptUi £nUpt=m"*
p=mUi£n
=i+l i =i¢+1U p=m" UitE n
p=mUifn+1
end i>nUp=m*Ui£n+1
i=n+1Up=m"?*

p=m’




