CS 336

Final Examination Solutions

1. a. [5] For $n \geq 1$, how many Boolean (i.e. true- or false-valued) functions exist for n Boolean variables?

The domain of such a function is $\{\text { True, False }\}^{n}$, a set of cardinality 2^{n}. For a given function, there are two options for the value defined for each variable - thus there are $2^{\left(2^{n}\right)}$ such functions.
2. [10] For $n \geq 1$, how many five-tuples $\langle i, j, k, l, m\rangle$ of non-negative values i, j, k, and l satisfy $i+j+k+l+m \leq n$? (Hint: First consider the situation $i+j+k+l+m=n$ and then think about $p=n-(i+j+k+l+m)$.

Consider placing n indistinguishable balls into six bins labeled i, j, k, l, m and p. Since the number of balls in the p bin is non-negative, each such placement corresponds to a single selection of a five-tuple $\langle i, j, k, l, m\rangle$ of non-negative values i, j, k, l and m satisfying $i+j+k+l+m \leq n$. There are $\binom{n+5}{5}$ such placements of n indistinguishable balls into six bins, therefore the same number of five-tuples $\langle i, j, k, l, m\rangle$ of non-negative values i, j, k, l and m satisfying $i+j+k+l+m \leq n$.
3. a. [10] Using a combinatorial argument, prove that for $n \geq 1$ and $m \geq 2$:

$$
\sum_{k=0}^{n}\binom{n}{k}(m-1)^{k}=m^{n}
$$

Consider strings of length n selected from the integers $\{1,2, \ldots, m\}$ with repetition allowed. For each of n positions there are m choices, so there are m^{n} such strings. Alternatively, let k indicate the number of copies of m in the string. The value of k varies from 0 to n. For a fixed value of k there are $\binom{n}{k}$ selections for the placement of the $m \mathrm{~s}$ and then $(m-1)$ choices for the integers $\{1,2, \ldots, m-1\}$ in each of the $n-k$ remaining positions. Thus there are $\binom{n}{k}(m-1)^{n-k}$ such strings with k copies of m, and $\sum_{k=0}^{n}\binom{n}{k}(m-1)^{n-k}$ overall. This must equal m^{n}.
b. [10] Using a combinatorial argument, prove that for $n \geq k \geq 0$:

$$
\binom{n}{k} k!(n-k)!=n!
$$

Consider permutations of length n selected from the integers $\{1,2, \ldots, n\}$. There are n ! such permutations. Alternatively, let k satisfy $n \geq k \geq 0$ and for any permutation first select the positions to be occupied by $\{1,2, \ldots, k\}$. There are $\binom{n}{k}$ such selections. Now permute the values $\{1,2, \ldots, k\}$ - there are k ! such permutations. Finally, permute the $n-k$ values $\{k+1, k+2, \ldots, n\}$, which can be done in $(n-k)$! ways, and place them into the positions of the permutation notoccupied by the values from $\{1,2, \ldots, k\}$. Thus, there are $\binom{n}{k} k!(n-k)$! such permutations and this must equal $n!$.
4. a. [10] For $n \geq 5$, what is the probability that a string of n zeros and ones has exactly 5 ones. (You may assume all strings of n zeros and ones are equally probable.)

There are 2^{n} equally likely strings with n zeros and ones. Of these $\binom{n}{5}$ have exactly 5 ones so the probability of exactly 5 ones is $\binom{n}{5} / 2^{n}$.
b. [5] For $n \geq 5$, what is the probability that a string of n zeros and ones has exactly 5 ones given that it has at least 4 ones. (You may assume all strings of n zeros and ones are equally probable.)

There are $\sum_{k=4}^{n}\binom{n}{k}$ strings of n zeros and ones that have at least 4 ones. From part a, we know that there are $\binom{n}{5}$ string with exactly 5 ones - and each has at least 4 ones, so the probability that a string of n zeros and ones has exactly 5 ones given that it has at least 4 ones is $\binom{n}{5} / \sum_{k=4}^{n}\binom{n}{k}$.
5. [15] Prove: If A is a nonempty set, $\mathscr{P}(A)$, the power set of A, is not countably infinite.

Suppose there was a set A such that $\mathscr{P}(A)$ were countably infinite. A could not be finite since then $|\mathscr{P}(A)|=2^{|A|}$ and so $\mathscr{P}(A)$ would be finite as well. A could not be uncountably infinite since the mapping $f: A \rightarrow \mathscr{P}(A)$ defined by $f(a)=\{a\}$ maps A one-to-one into $\mathscr{P}(A)$, so by Theorem $10, \mathscr{P}(A)$ must be uncountably infinite. Lastly, suppose A is countably infinite. Let $g: \square \xrightarrow[\text { onto }]{1-1} A$ and
$h: \square \xrightarrow[\text { onto }]{1-1} \mathscr{P}(A)$, then g is invertible so $h \circ g^{-1}: A \xrightarrow[\text { onto }]{1-1} \mathscr{P}(A)$. Define $\bar{A}=\left\{a \in A \mid a \notin h \circ g^{-1}(a)\right\}$. Since $\bar{A} \in \mathscr{P}(A)$, let $\bar{a}=\left(h \circ g^{-1}\right)^{-1}(\bar{A})$ (that is \bar{a} satisfies $\left.h \circ g^{-1}(\bar{a})=\bar{A}\right)$. If $\bar{a} \in \bar{A}$ there is a contradiction since then by the definition of $\bar{A}, \bar{a} \notin \bar{A}$. Yet if $\bar{a} \notin \bar{A}$ then for the same reason $\bar{a} \in \bar{A}$. Thus either way, there is a contradiction and the assumption that A is countably infinite is false. Since A cannot be finite, uncountably infinite, or countably infinite, A does not exist.
6. a. [10] Prove this corollary to Theorem 6:

Given a countably infinite collection of finite sets $\left\{A_{i}\right\}_{i \in \square}$ satisfying $A_{0} \neq \varnothing$ and for $i \geq 1$,

$$
A_{i} \not \subset \bigcup_{j=0}^{i-1} A_{j}
$$

the union $\bigcup_{i \in \square} A_{i}$ is countably infinite. (In other words, if each set contains at least one element not contained in its predecessors, the union cannot be finite.)

Theorem 6 guarantees that $\bigcup_{i \in \rrbracket} A_{i}$ is countable. For each $i \in \square$, select $a_{i} \in A_{i} \sim \bigcup_{j=0}^{i-1} A_{j}$. Define $f: \square \rightarrow \bigcup_{i \in \mathbb{\square}} A_{i}$ by $f(i)=a_{i}$. For $i_{1} \neq i_{2}$, assume without loss of generality that $i_{1}<i_{2}$, then $f\left(i_{1}\right)=a_{i_{1}} \in A_{i_{2}} \subseteq \bigcup_{j=0}^{i_{2}-1} A_{j}$ but $f\left(i_{2}\right)=a_{i_{2}} \notin \bigcup_{j=0}^{i_{2}-1} A_{j}$, so $f\left(i_{1}\right) \neq f\left(i_{2}\right)$ and f is one-to-one. By Theorem 4, $\bigcup_{i \in \mathbb{\square}} A_{i}$ is infinite and thus countably infinite.
7. [10] Prove that if f, g, and b are real-valued functions defined on the natural numbers, then $f=o(g)$ and $g=\mathrm{O}(b)$ imply $f=o(b)$.

Since $g=\mathrm{O}(b)$, there exist non-negative constants M and N_{1} such that for all $n \geq N_{1},|g(n)| \leq M|h(n)|$. Suppose we are given a positive ε. Since $f=o(g)$ there exists a non-negative constant N_{2} such that for all $n \geq N_{2}$,
$|f(n)| \leq \frac{\varepsilon}{M}|g(n)|$. But then we have for $n \geq \max \left\{N_{1}, N_{2}\right\}$,
$|f(n)| \leq \frac{\varepsilon}{M}|g(n)| \leq \frac{\varepsilon}{M} M|h(n)|=\varepsilon|h(n)|$. We conclude that $f=o(h)$.
8. [10] . Prove that if $0<a<b$, then $n^{b} \neq \mathrm{O}\left(n^{a}\right)$

Suppose $n^{b}=\mathrm{O}\left(n^{a}\right)$ and thus there exist non-negative constants M and N such that for all $n \geq N,\left|n^{b}\right| \leq M\left|n^{a}\right|$. We note that since $a<b, M^{\frac{1}{b-a}}$ exists and is positive. Choose $n=\max \left\{N,\left\lceil M^{\frac{1}{b-a}}\right\rceil+1\right\}$. We then have $n \geq N$ and $n>M^{\frac{1}{b-a}}$, so $n^{b-a}>M$ and $\left|n^{b}\right|=n^{b}>M n^{a}=M\left|n^{a}\right|$. This is a contradiction so $n^{b} \neq \mathrm{O}\left(n^{a}\right)$.
9. [10] Assuming x and y are integer variables, prove correct with respect to precondition " y is defined" and postcondition " $x \neq y$ ":
if $y>3$ then
$x:=y+6$
if $x>11$ then

```
        y:= 11
```

 endif
 else
$x:=y-2$
$y:=y-1$
endif

```
\(\ldots y\) is defined
if \(\mathrm{y}>3\) then
            \(\longrightarrow y>3\)
            \(x:=y+6\)
            \(\longrightarrow(y>3) \wedge(x=y+6)\)
            if \(x<11\) then
            \(\ldots(y>3) \wedge(x=y+6) \wedge(x<11)\)
            \(\ldots(y>3) \wedge(x=9)\)
            \(\mathrm{y}:=11\)
                \(\longrightarrow(y=11) \wedge(x=9)\)
            \(\longrightarrow x \neq y\)
            endif
            \(\ldots(x \neq y) \vee((y>3) \wedge(x=y+6) \wedge(x \geq 11))\)
            \(\longrightarrow\)
                \((x \neq y) \vee(x=y+6)\)
\(\square\) \(x \neq y\)
else
```

\qquad

```
\(x:=y-2\)
\(\longrightarrow(y \leq 3) \wedge(x=y-2)\)
\(\ldots x=y-2\)
\(y:=y-1\)
\(\longrightarrow\left(y=y^{\prime}-1\right) \wedge\left(x=y^{\prime}-2\right)\)
\(\longrightarrow x=y-1\)
\(\longrightarrow x \neq y\)
endif
\(\longrightarrow(x \neq y) \vee(x \neq y)\)
\(\longrightarrow x \neq y\)
```

10. [10] Prove the following code is partially correct with respect to precondition "true" and postcondition " $x=1$ " (assume x is an integer variable.):
$\mathrm{x}:=0$
while $x=0$ do
$\mathrm{x}:=1$
endwhile
Be explicit about your loop invariant: $I=$
11. a. [10] Prove the following code is partially correct with respect to precondition " $n \geq 1$ " and postcondition " $(k / 2<n) \wedge(k \geq n) \wedge\left(\exists j \geq 0 \ni k=2^{j}\right)$ " (assume k and n are integer variables.):
$\mathrm{k}:=1$
while $\mathrm{k}<\mathrm{n}$ do
$\mathrm{k}:=2^{*} \mathrm{k}$
endwhile
Be explicit about your loop invariant: $\mathrm{I}=(k / 2<n) \wedge\left(\exists j \geq 0 \ni k=2^{j}\right)$

$$
\begin{aligned}
& \sum^{n \geq 1} \\
& \mathrm{k}:=1 \\
& \ldots(n \geq 1) \wedge(k=1) \\
& \ldots(k / 2<n) \wedge\left(\exists j \geq 0 \text { э } k=2^{j}\right) \\
& \text { while } \mathrm{k}<\mathrm{n} \text { do } \\
& \text { endwhile } \\
& \underline{\ldots}(k / 2<n) \wedge(k \geq n) \wedge\left(\exists j \geq 0 \text { э } k=2^{j}\right)
\end{aligned}
$$

b. [5] Prove that the loop terminates.
12. [10] Assuming max, a, b, and c are integer variable and that a, b, and c are defined, determine the weakest precondition with respect to the postcondition

$$
"(\min =a \vee \min =b \vee \min =c) \wedge(\min \leq a) \wedge(\min \leq b) \wedge(\min \leq c) ":
$$

if $b<a$ then
\{if $\mathrm{b}<\mathrm{c}$ then $\min :=b$
else

$$
\min :=c\}
$$

else
\{if $\mathrm{c}<\mathrm{a}$ then $\min :=c\}$
13. a. [10] Determine the weakest precondition with respect to the postcondition " $z=2$ " for the following (assume z, y, and x are integer variables). Simplify your answer so that there are NO logical operators.
$\mathrm{x}:=3$
$z:=2 * x-y$
if $y>0$ then
z := z-2
else
z := -z
endif
b. [5] Determine the weakest precondition with respect to the postcondition
" $(x=y) \wedge\left(y=x^{\prime}\right)$ " for the following (assume y, and x are integer variables and are defined):

$$
x=y
$$

