CS 336

Final Examination Solutions

1. a. [5] Given $\left|A_{1}\right|=n_{1},\left|A_{2}\right|=n_{2},\left|A_{3}\right|=n_{3}$, and $|B|=m$, how many functions map $A_{1} \times A_{2} \times A_{3}$ into B ?

The domain of such a function is a set of cardinality $n_{1} \cdot n_{2} \cdot n_{3}$. For a given function, there are m options for the value defined for each variable - thus there are $m^{n_{1} n_{2} n_{3}}$ such functions.
b. [5] How many such functions mapping $A_{1} \times A_{2} \times A_{3}$ into B are one-to-one?

If $m<n_{1} \cdot n_{2} \cdot n_{3}$ there are no one-to-one functions mapping $A_{1} \times A_{2} \times A_{3}$ into B. If $m \geq n_{1} \cdot n_{2} \cdot n_{3}$, for a given function, there are m options for the value defined for a first variable, $m-1$ options for the value defined for a second variable, \ldots, and $m-n_{1} n_{2} n_{3}+1$ options for the value defined for a $n_{1} n_{2} n_{3}$ th variable - thus there are $m \cdot(m-1) \cdots \cdot\left(m-n_{1} n_{2} n_{3}+1\right)$ such one-to-one functions.
2. a. [10] How many triples $\langle i, j, k\rangle$ of non-negative values i, j, and k satisfy

$$
i+j+k \leq 20 \text { ? }
$$

(Hint: Consider a variable $l=20-(i+j+k)$.)

Consider placing 20 indistinguishable balls into four bins labeled i, j, k, and l. Since the number of balls in the l bin is non-negative, each such placement corresponds to a selection of a four-tuple $\langle i, j, k, l\rangle$ of non-negative values i, j, k, and l satisfying $i+j+k+l=20$. But since $l \geq 0$, this is equivalent to a selection of a triple $\langle i, j, k\rangle$ of non-negative values i, j, and k satisfying $i+j+k \leq 20$. There are $\binom{20+3}{3}$ such placements of 20 indistinguishable balls into four bins, therefore the same number of triples $\langle i, j, k\rangle$ of non-negative values i, j, and k satisfying $i+j+k \leq 20$.
b. [5] How many triples $\langle i, j, k\rangle$ of non-negative values i, j, and k satisfy

$$
4 \leq i+j+k \leq 20 ?
$$

For $n=0,1,2,3$, there are $\binom{n+2}{2}$ such placements of n indistinguishable balls into three bins, so there are $\binom{2}{2}+\binom{3}{2}+\binom{4}{2}+\binom{5}{2}$ triples $\langle i, j, k\rangle$ of non-negative values i, j, and k satisfying $i+j+k<4$. Since there are $\binom{23}{3}$ triples $\langle i, j, k\rangle$ of nonnegative values i, j, and k satisfying $i+j+k \leq 20$, there are $\binom{23}{3}-\binom{2}{2}-\binom{3}{2}-\binom{4}{2}-\binom{5}{2}$ triples $\langle i, j, k\rangle$ of non-negative values i, j, and k satisfying $4 \leq i+j+k \leq 20$.
3. a. [10] Using a combinatorial argument, prove that for $n \geq m \geq 3$,:

$$
\binom{n}{m}=\binom{n-3}{m}+\binom{n-3}{m-1}\binom{3}{1}+\binom{n-3}{m-2}\binom{3}{2}+\binom{n-3}{m-3}
$$

Let A be a set of cardinality $n-3, B$ be a disjoint set of cardinality 3 , and $C=A \cup B$. Since A and B are disjoint, C has cardinality n. Consider the number of subsets of C of cardinality $m \leq n$. We select without order and without repetitions so there are $\binom{n}{m}$ such subsets. Alternatively, there are four options corresponding to the number of the elements in the subset that come from $B:$ zero, one, two, or three. If there are zero elements in the subset that come from B, then all elements come from A, so there are $\binom{n-3}{m}$ such subsets. If there is one element in the subset that comes from B, then there are $m-1$ elements that come from A, so there are $\binom{n-3}{m-1}$ ways to choose the elements from A and $\binom{3}{1}$ ways to choose the single element from B. If there are two elements in the subset that come from B, then there are $m-2$ elements that come from A, so there are $\binom{n-3}{m-2}$ ways to choose the elements from A and $\binom{3}{2}$ ways to choose the two elements from B. Finally, if there are three elements in the subset that come from B, then there are $m-3$ elements that come from A, so there are $\binom{n-3}{m-3}$ ways to choose the elements from A and one way to choose the three elements from B. Together then there are $\binom{n-3}{m}+\binom{n-3}{m-1}\binom{3}{1}+\binom{n-3}{m-2}\binom{3}{2}+\binom{n-3}{m-3}$ subsets and this must equal $\binom{n}{m}$.
b. [10] Using a combinatorial argument, prove that for $m, n, p \geq 0$:

$$
\sum_{k=0}^{n}\binom{n}{k} m^{k} p^{n-k}=(m+p)^{n}
$$

Let A be a set of cardinality m, B be a disjoint set of cardinality p, and $C=A \cup B$. Since A and B are disjoint, C has cardinality $m+p$. Consider the number of strings of length n selected from the integers C. For the right side, we see there are n positions in the string each of which has $m+p$ options. We select with order and allow repetition so there are $(m+p)^{n}$ such strings. Alternatively, let k indicate the number of positions in the string occupied by an element of A. The value of k can vary from 0 to n. For a fixed value of k, there are $\binom{n}{k}$ ways to choose the positions for those elements and, with the positions fixed, there are m choices for each of the k positions. Finally, the elements of B must occupy the remaining $n-k$ positions of the string and there are p choices for each of the $n-k$ positions. Thus, there $\binom{n}{k} m^{k} p^{n-k}$ such strings for a fixed value of k and $\sum_{k=0}^{n}\binom{n}{k} m^{k} p^{n-k}$ strings overall. This must equal $(m+p)^{n}$.
4. a. [10] For $n \geq 5$, what is the probability that a string of n zeros and ones has exactly 5 ones. (You may assume all strings of n zeros and ones are equally probable.)

There are 2^{n} equally likely strings of zeros and ones of length n. Of these there are $\binom{n}{5}$ that have exactly 5 ones. Thus, probability that a string of n zeros and ones has exactly 5 ones is $\frac{\binom{n}{5}}{2^{n}}$.
b. [5] For $n \geq 5$, what is the probability that a string of n zeros and ones has exactly 5 ones given that it has at least three ones. (You may assume all strings of n zeros and ones are equally probable.)

There is one string with no 1 s , there are n strings with one 1 , and there are $\binom{n}{2}$ strings with two 1 s , so there are $2^{n}-1-n-\binom{n}{2}$ equally likely that have at least three ones. All strings with five 1 s have at least three 1 s , so the number of strings with five one and at least three ones is $\binom{n}{2}$. Thus, the probability that a string of n zeros and ones has exactly 5 ones given that it has at least three ones is $\frac{\binom{n}{2}}{2^{n}-1-n-\binom{n}{2}}$.
5. [10] Using definition 2^{\prime} (and no cardinality theorems) prove that $\mathrm{N} \times \mathrm{N}$, the set of ordered pairs of natural numbers, is infinite.

Consider the mapping $f: \mathrm{N} \times \mathrm{N} \rightarrow \mathrm{N} \times \mathrm{N}$ defined by $f(i, j)=(i+1, j)$. If $(i, j) \in \mathrm{N} \times \mathrm{N}$ then $(i+1, j) \in \mathrm{N} \times \mathrm{N}$. For $\left(i_{1}, j_{1}\right) \in \mathrm{N} \times \mathrm{N}$ and $\left(i_{2}, j_{2}\right) \in \mathrm{N} \times \mathrm{N}$ with $\left(i_{1}, j_{1}\right) \neq\left(i_{2}, j_{2}\right)$ then either $i_{1} \neq i_{2}$ or $j_{1} \neq j_{2}$ and thus either $i_{1}+1 \neq i_{2}+1$ or $j_{1} \neq j_{2}$. In either case $f\left(i_{1}, j_{1}\right)=\left(i_{1}+1, j_{1}\right) \neq\left(i_{2}+1, j_{2}\right)=f\left(i_{2}, j_{2}\right)$, so f is one-to-one. However, for no element $(i, j) \in \mathrm{N} \times \mathrm{N}$ is $f(i, j)=(0,0)$ since that would imply that $i=-1$. We conclude that f maps $\mathrm{N} \times \mathrm{N}$ one-to-one into a proper subsets of itself, and thus is infinite.
6. [10] Prove this corollary to Theorem 10:

Given a countably infinite collection of finite sets $\left\{A_{i}\right\}_{i \in \mathbb{N}}$ satisfying $A_{0} \neq \varnothing$ and for $i \geq 1$,

$$
A_{i} \not \subset \bigcup_{j=0}^{i-1} A_{j}
$$

the union $\bigcup_{i \in \mathbb{N}} A_{i}$ is countably infinite. (In other words, if each set contains at least one element not contained in its predecessors, the union cannot be finite.)

Theorem 10 guarantees that $\bigcup_{i \in \mathbb{N}} A_{i}$ is countable. For each $i \in \mathbb{N}$, select $a_{i} \in A_{i} \sim \bigcup_{j=0}^{i-1} A_{j}$. Define $f: \mathbb{N} \rightarrow \bigcup_{i \in \mathbb{N}} A_{i}$ by $f(i)=a_{i}$. For $i_{1} \neq i_{2}$, assume without loss of generality that $i_{1}<i_{2}$, then $f\left(i_{1}\right)=a_{i_{1}} \in A_{i_{2}} \subseteq \bigcup_{j=0}^{i_{2}-1} A_{j}$ but $f\left(i_{2}\right)=a_{i_{2}} \notin \bigcup_{j=0}^{i_{2}-1} A_{j}$, so $f\left(i_{1}\right) \neq f\left(i_{2}\right)$ and f is one-to-one. By Theorem $4, \bigcup_{i \in \mathbb{N}} A_{i}$ is infinite and thus countably infinite.
7. [10] Prove that for $a>1$ and $0<\lambda<1, a^{n} \neq \mathrm{O}\left(a^{\lambda n}\right)$.

Given any non-negative constants M and N. Notice that $M+1>0$ and $0<1-\lambda<1$. Take $n=\left\lceil\max \left\{N, \frac{\log (M+1)}{(1-\lambda) \log (a)}\right\rceil\right.$. We have $n \geq N$ and $n \geq \frac{\log (M+1)}{(1-\lambda) \log (a)}$, so $n \cdot(1-\lambda) \log (a) \geq \log (M+1)$ and $a^{(1-\lambda) n} \geq M+1>M$. So $\left|a^{n}\right|=a^{n}=a^{(1-\lambda) n} \cdot a^{\lambda n}>M a^{\lambda n}=M\left|a^{\lambda n}\right|$ and $a^{n} \neq \mathrm{O}\left(a^{\lambda n}\right)$.
8. [10] . Prove Theorem 7: If $a<b$, then $n^{a}=o\left(n^{b}\right)$

Given any $\varepsilon>0$, let $N=(1 / \varepsilon)^{1 /(b-a)}$. Notice then for $n \geq N=(1 / \varepsilon)^{1 /(b-a)}$, $n^{b-a} \geq 1 / \varepsilon$, and $n^{-(b-a)} \leq \varepsilon$. So $\left|n^{a}\right|=\left|n^{-(b-a)} n^{b}\right|=\left|n^{-(b-a)}\right|\left|n^{b}\right| \leq \varepsilon\left|n^{b}\right|$. Therefore, $n^{a}=o\left(n^{b}\right)$.
9. [10] Assuming x and y are integer variables, prove correct with respect to precondition " y is defined" and postcondition " $x \neq y$ ":

```
if y> 3 then
    x := y+6
    if }x<11\mathrm{ then
        y:= 11
    endif
else
    x := y-2
    y:= y-1
endif
```


10. [10] Prove the following code is partially correct with respect to precondition "true" and postcondition " $x=1$ " (assume x is an integer variable.):

```
x := 0
while }\textrm{x}=0\mathrm{ do
    x := 1
end
```

Be explicit about your loop invariant: $\mathrm{I}=$
Use $\mathrm{I}=(x \neq 0) \Rightarrow(x=1)$

11. [10] Prove partial correctness with respect to precondition $n \geq 1$ and postcondition $p=m^{n}$ (assume m, p, i, and n are integer variables and that m is defined.):

```
p:=1
i := 1
while \(i \leq n\) do
        \(\mathrm{p}:=\mathrm{m}^{*} \mathrm{p}\)
        \(\mathrm{i}:=\mathrm{i}+1\)
```

end

Be explicit about your loop invariant: $\mathrm{I}=$
Loop invariant: $\mathrm{I}=\left(\left(p=m^{i-1}\right) \wedge(i \leq n+1)\right)$

$$
\begin{aligned}
& \ldots n \geq 1 \\
& \mathrm{p}:=1 \quad p=1 \wedge n \geq 1 \\
& \mathrm{i}:=1 \quad i=1 \wedge p=1 \wedge n \geq 1 \\
& p=m^{i-1} \wedge i \leq n+1 \\
& \text { while } i \leq n \text { do ___ } i \leq n \wedge p=m^{i-1} \wedge i \leq n+1 \\
& \ldots \quad i \leq n \wedge p=m^{i-1} \\
& \mathrm{p}:=\mathrm{m}^{*} \mathrm{p} \ldots p=m p^{\prime} \wedge i \leq n \wedge p^{\prime}=m^{i-1} \\
& \ldots p=m^{i} \wedge i \leq n \\
& \mathrm{i}:=\mathrm{i}+1 \ldots \quad i=i^{\prime}+1 \wedge p=m^{i^{\prime}} \wedge i^{\prime} \leq n \\
& p=m^{i-1} \wedge i \leq n+1 \\
& \text { end ___ } i>n \wedge p=m^{i-1} \wedge i \leq n+1 \\
& \underline{\longrightarrow} i=n+1 \wedge p=m^{i-1} \\
& \underline{p=m^{n}}
\end{aligned}
$$

12. a [5] Assuming min, b, and c are integer variable and that b, and c are defined, determine the weakest precondition with respect to the postcondition
$"(\min =a \vee \min =b \vee \min =c) \wedge(\min \leq a) \wedge(\min \leq b) \wedge(\min \leq c) ":$
if $\mathrm{b}<\mathrm{c}$ then

$$
\min :=b
$$

else

```
    min}:= 
```

endif

$$
\begin{aligned}
& \begin{aligned}
& w p(\min :=\mathrm{c},(\min =a \vee \min =b \vee \min =c) \wedge(\min \leq a) \wedge(\min \leq b) \wedge(\min \leq c)) \\
&=(c=a \vee c=b \vee c=c) \wedge(c \leq a) \wedge(c \leq b) \wedge(c \leq c) \\
&=\text { true } \wedge(c \leq a) \wedge(c \leq b) \wedge \text { true } \\
&=(c \leq a) \wedge(c \leq b) \\
& w p(\min :=\mathrm{b},(\min =a \vee \min =b \vee \min =c) \wedge(\min \leq a) \wedge(\min \leq b) \wedge(\min \leq c)) \\
&=(b=a \vee b=b \vee b=c) \wedge(b \leq a) \wedge(b \leq b) \wedge(b \leq c) \\
&=\text { true } \wedge(c \leq a) \wedge \text { true } \wedge(b \leq c) \\
&=(b \leq a) \wedge(b \leq c) \\
& w p(\text { if } \mathrm{b}<\mathrm{c} \text { then min }:=\mathrm{b} \text { elsemin }:=\mathrm{c} \text { endif, } \\
&\quad(\min =a \vee \min =b \vee \min =c) \wedge(\min \leq a) \wedge(\min \leq b) \wedge(\min \leq c)) \\
&=((b<c) \wedge(b \leq a) \wedge(b \leq c)) \vee((b \geq c) \wedge(c \leq a) \wedge(c \leq b)) \\
&=((b<c) \wedge(b \leq a)) \vee((c \leq b) \wedge(c \leq a))
\end{aligned}
\end{aligned}
$$

b. [5] Letting pre represent the precondition found in a, prove that $(b<a) \Rightarrow$ pre .

We have pre $=((b<c) \wedge(b \leq a)) \vee((c \leq b) \wedge(c \leq a))$. If $b<a$ then either $(b<a) \wedge(b<c)$ or $(b<a) \wedge(b \geq c)$. If $(b<a) \wedge(b<c)$ then certainly $(b<c) \wedge(b \leq a)$. If $(b<a) \wedge(b \geq c)$ then $c \leq b<a$ and certainly $(c \leq b) \wedge(c \leq a)$. Thus, $(b<a) \Rightarrow$ pre.
13. [10] Determine the weakest precondition with respect to the postcondition " $z=2$ " for the following (assume z, y, and x are integer variables). Simplify your answer so that there are NO logical operators.
$\mathrm{x}:=3$
$z:=2^{*} x-y$
if $y>0$ then

$$
z:=z-2
$$

else

$$
\mathrm{z}:=-\mathrm{z}
$$

endif

$$
\begin{aligned}
& w p(\mathrm{z}:=\mathrm{z}-2, z=2)=(z-2=2)=(z=4) \\
& \text { So } \quad w p(\mathrm{z}:=-\mathrm{z}, \mathrm{z}=2)=(-z=2)=(z=-2) \\
& \begin{aligned}
w p(\mathrm{z}> & :=2 * \mathrm{x}-\mathrm{y},=(((\mathrm{y}>0) \wedge(2 \mathrm{x}-\mathrm{y}=4)) \vee((\mathrm{y} \leq 0) \wedge(2 \mathrm{x}-\mathrm{y}=-2))) \\
& =(((\mathrm{y}>0) \wedge(2 \mathrm{x}=4+\mathrm{y})) \vee((\mathrm{y} \leq 0) \wedge(2 \mathrm{x}=\mathrm{y}-2))) \\
w p(\mathrm{x} & :=3,((\mathrm{y}>0) \wedge(2 \mathrm{x}=4+\mathrm{y})) \vee((\mathrm{y} \leq 0) \wedge(2 \mathrm{x}=\mathrm{y}-2))) \\
& =(((\mathrm{y}>0) \wedge(2 \cdot 3=4+\mathrm{y})) \vee((\mathrm{y} \leq 0) \wedge(2 \cdot 3=\mathrm{y}-2))) \\
& =(((\mathrm{y}>0) \wedge(2=\mathrm{y})) \vee((\mathrm{y} \leq 0) \wedge(8=\mathrm{y}))) \\
& =((2=\mathrm{y}) \vee \text { false }) \\
& =(2=\mathrm{y})
\end{aligned}
\end{aligned}
$$

