
CS 336 
Final Examination Solutions 

 
1. a. [5] Given 1 1 2 2 3 3| | ,| | ,| | ,A n A n A n= = =  and | | ,B m=  how many functions map 

1 2 3A A A× ×  into B ?  
 
The domain of such a function is a set of cardinality 1 2 3n n n⋅ ⋅ . For a given function, 
there are m  options for the value defined for each variable – thus there are 1 2 3n n nm  
such functions. 

 
b. [5] How many such functions mapping 1 2 3A A A× ×  into B  are one-to-one?  
 

If 1 2 3m n n n< ⋅ ⋅  there are no one-to-one functions mapping 1 2 3A A A× ×  into B  . If 

1 2 3m n n n≥ ⋅ ⋅ , for a given function, there are m  options for the value defined for a 
first variable,  1m −  options for the value defined for a second variable, …, and  

1 2 3 1m n n n− +  options for the value defined for a 1 2 3n n n th variable – thus there are 

1 2 3( 1) ( 1)m m m n n n⋅ − ⋅ ⋅ − +"  such one-to-one functions. 
 
2. a. [10] How many triples , ,i j k  of non-negative values , ,i j  and k  satisfy  

20i j k+ + ≤ ? 
 (Hint: Consider a variable 20 ( )l i j k= − + + .) 
 

Consider placing 20  indistinguishable balls into four bins labeled , , ,i j k  and l . 
Since the number of balls in the l  bin is non-negative, each such placement corre-
sponds to a selection of a four-tuple , , ,i j k l  of non-negative values , , ,i j k  and l  
satisfying 20i j k l+ + + = . But since 0,l ≥ this is equivalent to a selection of a triple 

, ,i j k  of non-negative values , ,i j  and k  satisfying 20i j k+ + ≤ .  There are 
20 3

3
+ 

 
 

 such placements of 20  indistinguishable balls into four bins, therefore the 

same number of triples , ,i j k  of non-negative values , ,i j  and k  satisfying 
20i j k+ + ≤ . 

 



b. [5] How many triples , ,i j k  of non-negative values , ,i j  and k  satisfy  
4 20i j k≤ + + ≤ ? 

 

For 0,1,2,3,n =  there are 
2

2
n + 
 
 

 such placements of n  indistinguishable balls into 

three bins, so there are 
2 3 4 5
2 2 2 2
       

+ + +       
       

 triples , ,i j k  of non-negative values 

, ,i j  and k  satisfying 4.i j k+ + <  Since there are 
23
3

 
 
 

 triples , ,i j k  of non-

negative values , ,i j  and k  satisfying 20i j k+ + ≤ , there are 
23 2 3 4 5
3 2 2 2 2

         
− − − −         

         
 triples , ,i j k  of non-negative values , ,i j  and k  sat-

isfying 4 20i j k≤ + + ≤ . 
 



3. a. [10] Using a combinatorial argument, prove that for 3,n m≥ ≥ : 
 

3 3 3 3 3 3
1 1 2 2 3

n n n n n
m m m m m

− − − −           
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Let A  be a set of cardinality 3n − , B  be a disjoint set of cardinality 3 , and 

.C A B= ∪  Since A  and B  are disjoint, C  has cardinality .n  Consider the number 
of subsets of C  of cardinality .m n≤  We select without order and without repeti-

tions so there are 
n
m
 
 
 

 such subsets. Alternatively, there are four options corre-

sponding to the number of the elements in the subset that come from B : zero, one, 
two, or three. If there are zero elements in the subset that come from B , then all 

elements come from A , so there are 
3n

m
− 

 
 

 such subsets. If there is one element in 

the subset that comes from B , then there are 1m −  elements that come from A , so 

there are 
3
1

n
m
− 

 − 
 ways to choose the elements from A  and 

3
1
 
 
 

 ways to choose the 

single element from B . If there are two elements in the subset that come from B , 

then there are 2m −  elements that come from A , so there are 
3
2

n
m
− 

 − 
 ways to 

choose the elements from A  and 
3
2
 
 
 

 ways to choose the two elements from B . 

Finally, if there are three elements in the subset that come from B , then there are 

3m −  elements that come from A , so there are 
3
3

n
m
− 

 − 
 ways to choose the ele-

ments from A  and one way to choose the three elements from B . Together then 

there are
3 3 3 3 3 3
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subsets and this must equal 

.
n
m
 
 
 

 

 



b. [10] Using a combinatorial argument, prove that for , , 0m n p ≥ : 

0

( )
n

k n k n

k

n
m p m p

k
−

=

 
= + 

 
∑  

 
Let A  be a set of cardinality m , B  be a disjoint set of cardinality p , and 

.C A B= ∪  Since A  and B  are disjoint, C  has cardinality .m p+  Consider the 
number of strings of length n  selected from the integers C .  For the right side, we 
see there are n  positions in the string each of which has m p+  options. We select 
with order and allow repetition so there are ( )nm p+  such strings.  Alternatively, let 
k  indicate the number of positions in the string occupied by an element of A . The 

value of k  can vary from 0  to .n  For a fixed value of k , there are 
n
k
 
 
 

 ways to 

choose the positions for those elements and, with the positions fixed, there are m  
choices for each of the k  positions. Finally, the elements of B  must occupy the re-
maining n k−  positions of the string and there are p  choices for each of the n k−  

positions. Thus, there k n kn
m p

k
− 

 
 

 such strings for a fixed value of k  and 

0

n
k n k

k

n
m p

k
−

=

 
 
 

∑  strings overall. This must equal ( ) .nm p+  

 
4. a. [10] For 5n ≥ , what is the probability that a string of n zeros and ones has exactly 5 
ones. (You may assume all strings of n zeros and ones are equally probable.) 
 

There are 2n  equally likely strings of zeros and ones of length .n  Of these there are 

5
n 
 
 

 that have exactly  5 ones. Thus, probability that a string of n zeros and ones has 

exactly 5 ones is 
5

.
2n

n 
 
   

 



    b. [5]  For 5n ≥ , what is the probability that a string of n zeros and ones has exactly 5 
ones given that it has at least three ones. (You may assume all strings of n zeros and ones are 
equally probable.) 
 

There is one string with no 1s, there are n strings with one 1, and there are 

2
n 
 
 

strings with two 1s, so there are 2 1
2

n n
n  

− − −  
 

 equally likely that have at least 

three ones. All strings with five 1s have at least three 1s, so the number of strings 

with five one and at least three ones is 
2
n 
 
 

. Thus, the probability that a string of n 

zeros and ones has exactly 5 ones given that it has at least three ones is 

2
.
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2

n

n

n
n

 
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 
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 

 

 
5. [10] Using definition 2' (and no cardinality theorems) prove that Ν×Ν , the set of or-
dered pairs of natural numbers, is infinite.  
 

Consider the mapping :f Ν×Ν→Ν×Ν  defined by ( , ) ( 1, )f i j i j= + .  If 
( , )i j ∈Ν×Ν  then ( 1, )i j+ ∈Ν×Ν .  For 1 1( , )i j ∈Ν×Ν  and 2 2( , )i j ∈Ν×Ν  with 

1 1 2 2( , ) ( , )i j i j≠  then either 1 2i i≠  or 1 2j j≠  and thus either 1 21 1i i+ ≠ + or 1 2j j≠ .  
In either case 1 1 1 1 2 2 2 2( , ) ( 1, ) ( 1, ) ( , )f i j i j i j f i j= + ≠ + = , so f  is one-to-one.  
However,  for no element ( , )i j ∈Ν×Ν  is ( , ) (0,0)f i j =  since that would imply 
that 1i = − .  We conclude that f  maps Ν×Ν  one-to-one into a proper subsets of 
itself, and thus is infinite. 



6. [10] Prove this corollary to Theorem 10: 
Given a countably infinite collection of finite sets { }i i

A
∈`  satisfying 0A ≠ ∅  and for 1,i ≥  

 
1

0

i

i j
j

A A
−

=

⊄∪  

the union i
i

A
∈
∪̀  is countably infinite. (In other words, if each set contains at least one element not 

contained in its predecessors, the union cannot be finite.) 
 

Theorem 10 guarantees that i
i

A
∈
∪̀  is countable.  For each i∈` , select 

1

0

~
i

i i j
j

a A A
−

=

∈ ∪ . Define : i
i

f A
∈

→
`

` ∪  by ( ) if i a= .  For 1 2i i≠ , assume without 

loss of generality that 1 2i i< , then 
2

1 2

1

1
0

( )
i

i i j
j

f i a A A
−

=

= ∈ ⊆∪  but 
2

2

1

2
0

( )
i

i j
j

f i a A
−

=

= ∉∪ , 

so 1 2( ) ( )f i f i≠  and f  is one-to-one.  By Theorem 4, i
i

A
∈
∪̀  is infinite and thus 

countably infinite. 
 
7. [10 ] Prove that for 1a >  and 0 1λ< < , ( )n na aλ≠ Ο . 

 
Given any non-negative constants M  and N  . Notice that 1 0M + >  and 

0 1 1λ< − < . Take log( 1)max{ ,
(1 ) log( )

Mn N
aλ

 +
=  − 

. We have n N≥  and 

log( 1)
(1 ) log( )

Mn
aλ

+
≥

−
, so (1 ) log( ) log( 1)n a Mλ⋅ − ≥ + and (1 ) 1 .na M Mλ− ≥ + >  So 

(1 )| | | |n n n n n na a a a Ma M aλ λ λ λ−= = ⋅ > =  and ( )n na aλ≠ Ο . 
 
8. [10] . Prove Theorem 7: If ba < , then n na b= ο ( )   
 

Given any ε > 0 , let N b a= −( / ) /( )1 1ε . Notice then for n N b a≥ = −( / ) /( )1 1ε , 
nb a− ≥ 1 / ε , and n b a− − ≤( ) ε . So n n n n n na b a b b a b b= = ≤− − − −( ) ( ) ε . Therefore, 

n na b= ο ( ) .  
 



9. [10] Assuming x  and y  are integer variables, prove correct with respect to precondition 
“ y  is defined” and postcondition “ ≠x y ”: 
 
if y > 3 then  
 x := y+6 

if x < 11 then 
  y : = 11 
 endif 
else 
 x := y-2 
 y := y-1 
endif 

 
______________________ y  is defined 
if y > 3 then  __________ 3y >  

x := y+6 
 ________________ ( 3) ( 6)y x y> ∧ = +  
 ________________ x y≠  

if x < 11 then____ ( ) ( 11)x y x≠ ∧ <  
  __________ 11x <  

y : = 11 ___ ( 11) ( 11)y x= ∧ <  
__________ ≠x y  

endif___________ ( ) ( )x y x y≠ ∨ ≠  
 ________________ x y≠  
else   _________________ 3y ≤  
 x := y-2_________ ( 3) ( 2)y x y≤ ∧ = −  

________________ 2x y= −  
 y := y-1_________ ( ' 1) ( ' 2)y y x y= − ∧ = −  

________________ 1x y= −  
 ________________ x y≠  
endif_________________ ( ) ( )x y x y≠ ∨ ≠  
______________________ x y≠  

 



10. [10] Prove the following code is partially correct with respect to precondition “true” and 
postcondition “ 1=x ” (assume x is an integer variable.): 
 

x := 0 
while x = 0 do 
 x := 1 
end 

 
Be explicit about your loop invariant: I = 
 

Use I = ( 0) ( 1)x x≠ ⇒ =  
 

__________________________  true  
x := 0_____________________  0x =  
__________________________ ( 0) ( 1)x x≠ ⇒ =  
while x = 0 do______________ ( 0) (( 0) ( 1))x x x= ∧ ≠ ⇒ =  
 x := 1_______________  1x =  
           ____________________ ( 0) ( 1)x x≠ ⇒ =  
end__________________  ( 0) (( 0) ( 1))x x x≠ ∧ ≠ ⇒ =  
__________________________  1x =  

 



11. [10] Prove partial correctness with respect to precondition n ≥ 1  and postcondition 
p mn=  (assume m, p, i, and n are integer variables and that m is defined.): 

 
p :=1 
i := 1 
while i n≤  do 
 p := m*p 
 i := i+1 
end 

 
Be explicit about your loop invariant: I = 

 
Loop invariant: I = 1(( ) ( 1))ip m i n−= ∧ ≤ +  

 
__________________________ 1≥n  
p :=1_____________________ 11 ≥∧= np  
i := 1_____________________ 111 ≥∧=∧= npi  

__________________________ 11 +≤∧= − nimp i  

while i n≤  do______________ 11 +≤∧=∧≤ − nimpni i  

_______________________ 1−=∧≤ impni  

p := m*p ______________ 1−=′∧≤∧′= impnipmp  

______________________ nimp i ≤∧=  

i := i+1________________ nimpii i ≤′∧=∧+′= ′1  

_______________________ 11 +≤∧= − nimp i  

end________________________ 11 +≤∧=∧> − nimpni i  

___________________________ 11 −=∧+= impni  

___________________________ nmp =  



12. a [5] Assuming min, b, and c are integer variable and that  b, and c are defined, deter-
mine the weakest precondition with respect to the postcondition  

“(min min min ) (min ) (min ) (min )a b c a b c= ∨ = ∨ = ∧ ≤ ∧ ≤ ∧ ≤ ”: 
 
if b < c then 
 min : = b 
else 
 min := c 
endif  
 

= ∨ = ∨ = ∧ ≤ ∧ ≤ ∧ ≤
= = ∨ = ∨ = ∧ ≤ ∧ ≤ ∧ ≤
= ∧ ≤ ∧ ≤ ∧
= ≤ ∧ ≤

(min := c,  (min min min ) (min ) (min ) (min ))
( ) ( ) ( ) ( )

( ) ( )
( ) ( )

wp a b c a b c
c a c b c c c a c b c c

true c a c b true
c a c b

 

= ∨ = ∨ = ∧ ≤ ∧ ≤ ∧ ≤
= = ∨ = ∨ = ∧ ≤ ∧ ≤ ∧ ≤
= ∧ ≤ ∧ ∧ ≤
= ≤ ∧ ≤

(min := b,  (min min min ) (min ) (min ) (min ))
( ) ( ) ( ) ( )

( ) ( )
( ) ( )

wp a b c a b c
b a b b b c b a b b b c

true c a true b c
b a b c

 

= ∨ = ∨ = ∧ ≤ ∧ ≤ ∧ ≤
= < ∧ ≤ ∧ ≤ ∨ ≥ ∧ ≤ ∧ ≤
= < ∧ ≤ ∨ ≤ ∧ ≤

(  b < c min : = b min := c , 
(min min min ) (min ) (min ) (min ))

((   ) ( ) ( )) ((   ) ( ) ( ))
((   ) ( )) ((   ) ( ))

wp
a b c a b c

b c b a b c b c c a c b
b c b a c b c a

if then else endif

 

 
b. [5] Letting pre  represent the precondition found in a, prove that < ⇒( )b a pre . 
 

We have = < ∧ ≤ ∨ ≤ ∧ ≤((   ) ( )) ((   ) ( ))pre b c b a c b c a . If <b a  then either 
< ∧ <( ) ( )b a b c  or < ∧ ≥( ) ( )b a b c . If < ∧ <( ) ( )b a b c  then certainly 
< ∧ ≤( ) ( )b c b a . If < ∧ ≥( ) ( )b a b c  then ≤ <c b a   and certainly ≤ ∧ ≤( ) ( )c b c a . 

Thus, < ⇒( )b a pre .  
 



13. [10] Determine the weakest precondition with respect to the postcondition “z = 2” for 
the following (assume z, y, and x are integer variables).  Simplify your answer so that there 
are NO logical operators. 
 
x := 3 
z := 2*x-y 
if y>0 then 
 z := z-2 
else 
 z := -z 
endif 
 

( , 2) ( 2 2) ( 4)wp z z z= = − = = =z := z - 2  
( , 2) ( 2) ( 2)wp z z z= = − = = = −z := -z  

So = = ∧ ∨ ≤ ∧(  y>0 z := z-2 z := -z, 2) (((  y>0) (z=4)) ((  y 0) (z=-2)))wp zif then else  

( , ((( y>0) (2x-y=4)) (( y 0) (2x-y=-2)))
((( y>0) (2x=4+y)) (( y 0) (2x=y-2)))

wp = ∧ ∨ ≤ ∧
= ∧ ∨ ≤ ∧

z := 2* x - y
 

( , (( y>0) (2x=4+y)) (( y 0) (2x=y-2)))
((( y>0) (2 3=4+y)) (( y 0) (2 3=y-2)))
((( y>0) (2=y)) (( y 0) (8=y)))
((2=y) )
(2=y)

wp

false

∧ ∨ ≤ ∧
= ∧ ⋅ ∨ ≤ ∧ ⋅
= ∧ ∨ ≤ ∧
= ∨
=

x := 3

 


