Program Verification with Hoare Axioms

- **Definition 1**: A piece of code S is *correct* with respect to precondition p and postcondition q if whenever assertion p is true prior to the execution of S and S is executed then it terminates and q is true at its termination. A piece of code S is *partially correct* with respect to precondition p and postcondition q if whenever assertion p is true prior to the execution of S and S is executed and if it terminates then q is true at its termination. Partial correct methods by $p\{S\}q$.
- **1. Axiom of Composition**: $(p_1\{S_1\}p_2) \land (p_2\{S_2\}p_3) \Rightarrow p_1\{S_1; S_2\}p_3$.
- **2. Axioms of Consequence**: $(p_1 \Rightarrow p_2) \land (p_2\{S\}p_3) \Rightarrow p_1\{S\}p_3$ $(p_1\{S\}p_2) \land (p_2 \Rightarrow p_3) \Rightarrow p_1\{S\}p_3.$
- **3. If-then Axiom**: $((p_1 \land condition) \{S\} p_2) \land ((p_1 \land \neg condition) \Rightarrow p_2)$ $\Rightarrow p_1 \{ \text{if condition then } S \} p_2.$
- **4. If-then-else Axiom**: $(p_1 \land condition\{S_1\}p_2) \land (p_1 \land \neg condition\{S_2\}p_2)$ $\Rightarrow p_1\{\text{if condition then } S_1 \text{ else } S_2\}p_2.$
- **5. Iteration Axiom**: $(p \land condition)\{S\}p$ $\Rightarrow p\{$ **while** condition **do** S $\}(\neg condition \land p).$
- **6.** Axiom of Assignment: $(p(E) \{x := E\} p(x))$.

Program Verification with Weakest Preconditions

• **Definition 2:** The weakest precondition for code S and postcondition *q* is the weakest assertion *p* so that if *p* is a precondition and code S is executed then it terminates and *q* is true at its termination. This is denoted as p = wp(S, q). Thus for any assertion *r* so that $r \{S\} q$ is true and S terminates given precondition *r*, then $r \Rightarrow p$. Conversely, if $r \Rightarrow wp(S, q)$ then $r \{S\} q$ is true and S terminates given precondition *r*.

Theorem 1: $wp(\mathbf{skip}, q) = q$.

Theorem 2: $wp(S_1; S_2, q) = wp(S_1, wp(S_2, q)).$

Theorem 3: wp(x := E, q(x)) = E is defined and q(E).

Theorem 4: $wp(\text{if cond then } S, q) = (cond \Rightarrow wp(S, q)) \land (\neg cond \Rightarrow q)$ = $(cond \land wp(S, q)) \lor (\neg cond \land q).$

Theorem 5: wp(if cond then S_1 else S_2 , q)

 $= (cond \Rightarrow wp(S_1, q)) \land (\neg cond \Rightarrow wp(S_2, q))$ $= (cond \land wp(S_1, q)) \lor (\neg cond \land wp(S_2, q))$