Program Venification with H oare Axioms

- Definition 1. A piece of code S is correct with respect to precondition p and postcondition q if whenever assertion p is true prior to the execution of S and S is executed then it terminates and q is true at its termination. A piece of code S is partially correct with respect to precondition p and postcondition q if whenever assertion p is true prior to the execution of S and S is executed and if it terminates then q is true at its termination. Partial correctness is denoted by $\mathrm{p}\{\mathrm{S}\} q$.

1. Axiom of Composition: $\left(p_{1}\left\{S_{1}\right\} p_{2}\right) \wedge\left(p_{2}\left\{S_{2}\right\} p_{3}\right) \Rightarrow p_{1}\left\{S_{1} ; S_{2}\right\} p_{3}$.
2. Axioms of Consequence: $\left(p_{1} \Rightarrow p_{2}\right) \wedge\left(p_{2}\{S\} p_{3}\right) \Rightarrow p_{1}\{S\} p_{3}$

$$
\left(p_{1}\{S\} p_{2}\right) \wedge\left(p_{2} \Rightarrow p_{3}\right) \Rightarrow p_{1}\{S\} p_{3} .
$$

3. If-then Axiom: $\left(\left(p_{1} \wedge\right.\right.$ condition $\left.)\{S\} p_{2}\right) \wedge\left(\left(p_{1} \wedge \neg\right.\right.$ condition $\left.) \Rightarrow p_{2}\right)$
$\Rightarrow p_{1}\{\mathbf{i f}$ condition then S$\} p_{2}$.
4. If-then-else Axiom: $\left(p_{1} \wedge\right.$ condition $\left.\left\{S_{1}\right\} p_{2}\right) \wedge\left(p_{1} \wedge \neg\right.$ condition $\left.\left\{S_{2}\right\} p_{2}\right)$
$\Rightarrow p_{1}\left\{\mathbf{i f}\right.$ condition then S_{1} else $\left.S_{2}\right\} p_{2}$.
5. Iteration Axiom: $\quad(p \wedge$ condition $)\{S\} p$
$\Rightarrow p\{$ while condition do S$\}(\neg$ condition $\wedge p)$.
6. Axiom of Assignment: $(p(E)\{x:=E\} p(x)$.

Program Verification with Weakest Preconditions

- Definition 2: The weakest precondition for code S and postcondition q is the weakest assertion p so that if p is a precondition and code S is executed then it terminates and q is true at its termination. This is denoted as $p=w p(S, q)$. Thus for any assertion r so that $\mathrm{r}\{\mathrm{S}\} \mathrm{q}$ is true and S terminates given precondition r , then $r \Rightarrow p$. Conversely, if $r \Rightarrow$ $w p(S, q)$ then $r\{S\} q$ is true and S terminates given precondition r.

Theorem 1: wp(skip, q) = q.
Theorem 2: $\operatorname{wp}\left(S_{1} ; S_{2}, \mathrm{q}\right)=\mathrm{wp}\left(S_{1}, \mathrm{wp}\left(S_{2}, \mathrm{q}\right)\right)$.
Theorem 3: $w p(x:=E, q(x))=E$ is defined and $q(E)$.
Theorem 4: $w p(i f$ cond then $S, q)=($ cond $\Rightarrow w p(S, q)) \wedge(\neg$ ond $\Rightarrow q)$

$$
=(\text { ond } \wedge w p(S, q)) \vee(\neg \text { cond } \wedge q)
$$

Theorem 5: wp(if cond then S_{1} else $\left.S_{2}, \mathrm{q}\right)$

$$
\begin{aligned}
& =\left(\text { ond } \Rightarrow \operatorname{wp}\left(S_{1}, q\right)\right) \wedge\left(\neg \operatorname{cond} \Rightarrow \operatorname{wp}\left(S_{2}, q\right)\right) \\
& =\left(\text { ond } \wedge \operatorname{wp}\left(S_{1}, q\right)\right) \vee\left(\neg \text { cond } \wedge w p\left(S_{2}, q\right)\right)
\end{aligned}
$$

