## Selecting with Repetition but without Order Balls in Bins

We know that there are $\binom{n+k-1}{k}=\binom{n+k-1}{n-1}$ ways to select $k$ objects from $n$ with order ignored but allowing repetition. Here is a way to see it using balls and bins.

Think of $n$ bins labeled $a_{1}, a_{2}, \ldots, a_{n}$. I want to throw $k$ balls into the bins. In the end I care about how many balls are in each bin but I do not care which ball went into which bin (i.e. if the first bin ends up with two balls, I do not care whether they were balls 3 and 5 or 2 and 8 or whatever. All I care about is that there are two).

Think of the number of balls in bin $a_{1}$ as the number of times $a_{1}$ was selected, then notice that this is selecting allowing repetition (more than one ball may be in the $a_{1} \mathrm{bin}$ ) but without order (since I don't care which balls are in the $a_{1}$ bin).

Consider a little diagram looking like this

$$
\infty|\circ||\mid \circ \circ \circ
$$

The strokes $\mid$ suggest the divisions between the bins. Thus this diagram represents two balls in bin $a_{1}$, one in bin $a_{2}$, none in $a_{3}$ and $a_{4}$, and three in $a_{5}$.

So how many such diagrams could I construct with six balls (i.e. the little $\circ$ 's) and four strokes (one less than the number of elements $a_{1}, a_{2}, \ldots, a_{5}$ )? Alternatively said: How many ways of putting six balls in five bins? Alternatively said: How many ways of selecting six items from five allowing repetition and ignoring order?

With six balls and four strokes, that's a total of ten objects. If you mark which ones of the ten slots must contain ${ }^{\circ}$ 's, the rest is fixed (since I just fill strokes into the empty slots). So there are $\binom{10}{6}$ ways of putting the six balls into the five bins.

In general, you have slots for the $k \circ \mathrm{~s}$ and slots for $n-1 \mid \mathrm{s}$ for a total of $n+k-1$. Of these you select the $k$ to contain the 0 s . (That's $\binom{n+k-1}{k}$ ways.) Alternatively, you select the $n-1$ to contain the $\mid \mathrm{s}$ for $\binom{n+k-1}{n-1}$ ways. The selection is fixed after the 0 s (or the $\mid \mathrm{s}$ ) have been positioned. You read off exactly how many balls in each bin.

Example: There are $\binom{6+10-1}{10}$ ways of rolling ten six-sided dice since this is equivalent to throwing ten balls into six bins.

