1. Present a combinatorial argument that for all positive integers x and y

$$\sum_{k=0}^{n} \binom{n}{k} x^{k} y^{n-k} = (x+y)^{n}.$$

(Hint: Consider sequences drawn from the union of distinct sets A and B of cardinalities x and y, respectively.)

2. Present a combinatorial argument that for all positive integers $1 \le k \le m \le r$: $\binom{r}{m} \binom{r}{r-k}$

$$\binom{r}{m}\binom{m}{k} = \binom{r}{k}\binom{r-k}{m-k}.$$

3. a. Present a combinatorial argument that for all positive integers *n*, *a*, and b(>a):

$$\sum_{k=0}^n \binom{n}{k} a^k (b-a)^{n-k} = b^n.$$

b. Present a combinatorial argument that for all positive integers *n*:

$$\binom{2n}{2} = 2\binom{n}{2} + n^2$$

4. Using a combinatorial argument, prove that for $n \ge 1$:

$$\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}$$

5. a. Present a combinatorial argument that for all positive values of *n*:

$$3^{n} = \sum_{i=0}^{n} \sum_{j=0}^{n-i} \binom{n}{i}$$

b. Present a combinatorial argument that for all *m* and *n* satisfying $2 \le m$, $2 \le n$, and $m \le n+1$:

$$\binom{n+2}{m} = \binom{n+1}{m} + \binom{n}{m-1} + \binom{n}{m-2}$$

(Hint: Consider $A = B \cup \{c\} \cup \{d\}$, where $c \neq d$, $c \notin B, d \notin B$, and #B = n.)

6. a. Present a combinatorial argument that for all *n* and *k* satisfying $1 \le n$ and $k \le n$:

$$n! = \binom{n}{k} \cdot k! \cdot (n-k)!$$

b. Present a combinatorial argument that for all positive values of *n*:

$$2^{n} = 1 + \sum_{k=0}^{n-1} 2^{k}$$

(Hint: Consider Let *k* be the position of the first 1 in a bit string.)

7. a. Present a combinatorial argument that for all $n \ge 1$:

$$\sum_{k=0}^{n} \binom{n}{k} 2^{k} = 3^{n}$$

b. Present a combinatorial argument that for all nonegative integers *p*, *s*, and *n* satisfying $p + s \le n$

$$\binom{n}{p}\binom{n-p}{s} = \binom{n}{p+s}\binom{p+s}{p}$$

(Hint: Consider choosing two subsets.)

8. a. Present a combinatorial argument that for all $n \ge 1$:

$$\sum_{k=1}^{n} \binom{n}{k} = 2^{n} - 1$$

(Note: The summation begins with k = 1.)

b. Present a combinatorial argument that for all integers k and n satisfying $3 \le k \le n$

$$\binom{n}{k} = \binom{n-3}{k} + 3\binom{n-3}{k-1} + 3\binom{n-3}{k-2} + \binom{n-3}{k-3}$$

(Hint: Consider three special elements.)

9. Present a combinatorial argument that for all positive integers m, n, and r, satisfying $r \le \min\{m, n\}$:

$$\binom{m+n}{r} = \sum_{k=0}^{n} \binom{m}{k} \binom{n}{r-k}.$$

(Hint: Consider selecting from two sets.)

b. Present a combinatorial argument that for all positive integers *n* :

$$3^{n} = \sum_{i=0}^{n} \left(\sum_{j=0}^{n-i} \binom{n}{i} \binom{n-i}{j} \right)$$

(Note: Be very specific about the roles of i and j.)