4. [10] Using a combinatorial argument, prove that for $n \geq 1$:

$$
\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}
$$

Let A and B be disjoint sets of cardinality n each and $C=A \cup B$. How many subsets of C are there of cardinality n. We are selecting elements for such a subset without repletion not with concern for order so there are $\binom{2 n}{n}$ such subsets. Alternatively, let k represent the number of elements in such a subset that were selected from A. The value of k may vary from 0 to n. There are $\binom{n}{k}$ such selections of the k elements from A. Now select which k elements from B will not be in the subset (the k that remain will thus be in the subset). There are $\binom{n}{k}$ of selecting these so $\binom{n}{k}^{2}$ ways of selecting the subset and $\sum_{k=0}^{n}\binom{n}{k}^{2}$ ways overall. This must equal $\binom{2 n}{n}$.
2. a. [10] Present a combinatorial argument that for all $n \geq 1$:

$$
\sum_{k=0}^{n}\binom{n}{k} 2^{k}=3^{n}
$$

Let $A=\{a, b, c\}$ and consider all strings of length n using elements of A. Since there are three options for each component of the string, there are 3^{n} such strings. Alternatively, consider first consider the positions of any c^{\prime} s in the string. Let k, represent the number of non- c 's (i.e., a 's and b 's) in the string. Clearly k could range from 0 through n. For a fixed value of k, there are $\binom{n}{k}$ ways to choose the positions for the non- c 's. Then for each of the k positions, there are two options (i.e., a or b) for the character in the position. The remaining n-k positions must be occupied by c^{\prime} s. Thus there are $\binom{n}{k} 2^{k}$ ways to assign elements to the positions with k non $-c$'s. The total is $\sum_{k=0}^{n}\binom{n}{k} 2^{k}$ and this must equal 3^{n}
b. [10] Present a combinatorial argument that for all nonnegative integers p, s, and n satisfying $p+s \leq n$

$$
\binom{n}{p}\binom{n-p}{s}=\binom{n}{p+s}\binom{p+s}{p}
$$

(Hint: Consider choosing two subsets.)

Let a set A have n elements and consider how many ways there are to select disjoint subsets B and C of A so that B has p elements and C has s elements. First we could select the p elements for B in $\binom{n}{p}$ ways and then select the s elements for C from the remaining $n-p$ elements of $A \sim B$ in $\binom{n-p}{s}$ ways. Together this yields $\binom{n}{p}\binom{n-p}{s}$ such selections. Alternatively, we could first select the $p+s$ elements for $B \cup C$ in $\binom{n}{p+s}$ ways and then select the p elements for B from $B \cup C$ in $\binom{p+s}{p}$ ways. There are thus $\binom{n}{p+s}\binom{p+s}{p}$ such selections and this must equal $\binom{n}{p}\binom{n-p}{s}$
2. a. [10] Present a combinatorial argument that for all $n \geq 1$:

$$
\sum_{k=1}^{n}\binom{n}{k}=2^{n}-1
$$

(Note: The summation begins with $k=1$.)
Consider the cardinality of the set of non-empty subsets of a set A of n elements. For each element of A, there are two options: either be present in a subset or not. Thus there are 2^{n} total subsets but one of these is empty so there are $2^{n}-1$ nonempty subsets of A. Alternatively, let k indicate the cardinality of the subset. Since we are counting non-empty subsets, k ranges from 1 to n. For a fixed value of k, there are $\binom{n}{k}$ ways of selecting the k, subset elements from the n total elements of A. Adding this to include all possible cases of k , we obtain $\sum_{k=1}^{n}\binom{n}{k}$ and this must equal $2^{n}-1$.
b. [10] Present a combinatorial argument that for all integers k and n satisfying $3 \leq k \leq n$

$$
\binom{n}{k}=\binom{n-3}{k}+3\binom{n-3}{k-1}+3\binom{n-3}{k-2}+\binom{n-3}{k-3}
$$

(Hint: Consider three special elements.)
Consider the number of subsets of size k of a set B of cardinality n. Since $n \geq 3$, we may select three elements b_{1}, b_{2}, b_{3} of B and let $\mathrm{C}=\mathrm{B} \sim\left\{b_{1}, b_{2}, b_{3}\right\}$. Thus C has cardinality n-3 and $\mathrm{B}=\mathrm{C} \cup\left\{b_{1}, b_{2}, b_{3}\right\}$. We know there are $\binom{n}{k}$ such subsets. Alternatively, to select k elements of B for a subset there are four options: all k come from $\mathrm{C}, k-1$ come from C and the k th is either b_{1}, b_{2}, or $b_{3}, k-2$ come from C and the k-1st and k th are exactly two of b_{1}, b_{2}, or b_{3}, or $k-3$ come from C and all of b_{1}, b_{2}, and b_{3} are present. For the first option, there are $\binom{n-3}{k}$ possibilities since all k come from C. For the second option, there are $3\binom{n-3}{k-1}$ possibilities, since $k-1$ elements are selected from C and one from the three of b_{1}, b_{2}, or b_{3}. For the third option, there are $3\binom{n-3}{k-2}$ possibilities, since $k-2$ elements are selected from C and one from the three of b_{1}, b_{2}, or b_{3} is not selected. Lastly, if $k-3$ come from C and all of b_{1}, b_{2}, and b_{3} are present, then there are $\binom{n-3}{k-3}$ options. The total is $\binom{n-3}{k}+3\binom{n-3}{k-1}+3\binom{n-3}{k-2}+\binom{n-3}{k-3}$ and this must equal $\binom{n}{k}$
3. [10] Present a combinatorial argument that for all positive integers m, n, and r, satisfying $r \leq \min \{m, n\}$:

$$
\binom{m+n}{r}=\sum_{k=0}^{r}\binom{m}{k}\binom{n}{r-k} .
$$

(Hint: Consider selecting from two sets.)
Let A and B be disjoint sets of cardinalities m and n, respectively. Let $C=A \cup B$ and consider the number of subsets of C of cardinality r. Since $|C|=|A|+\mid B)=m+n$, there are $\binom{m+n}{r}$ such subsets. Alternatively let k be the number of elements in a subset that came from A. The value of k can range from 0 to r. For a fixed value of k, there are $\binom{m}{k}$ ways to select the k elements from
A and $\binom{n}{r-k}$ ways to select the remaining $r-k$ elements from B, thus $\sum_{k=0}^{r}\binom{m}{k}\binom{n}{r-k}$ total ways. This must equal $\binom{m+n}{r}$.
3. [10] Present a combinatorial argument that for all positive integers n :

$$
3^{n}=\sum_{k=0}^{n}\binom{n}{k} 2^{k} .
$$

Consider as a model strings of length n using the characters from the set $\{a, b, c\}$.
For each n positions there are 3 options so there are 3^{n} such strings. Alternatively, let k represent the number of positions in the string not occupied by a (i.e., thus, occupied by either b or c). The value of k can vary between 0 and n. For a fixed number k of $b \mathrm{~s}$ and $c \mathrm{~s}$, there are $\binom{n}{k}$ ways to determine the positions to be occupied by the $b \mathrm{~s}$ and $c \mathrm{~s}$ and then 2 choices (either b or c) for each of these k positions, for a total of $\binom{n}{k} 2^{k}$ possibilities. The remaining $n-k$ positions must be occupied by a s. Summing over all possible values of k. We have $\sum_{k=0}^{n}\binom{n}{k} 2^{k}$ such strings and this must equal 3^{n}.

Examination 1 Solutions CS 336

1. [5] For $n \geq 3$, how many diagonals does a convex polygon with n extreme points have? (Consider a convex polygon given by extreme points $\left\langle P_{1}, P_{2}, \ldots, P_{n}\right\rangle$ in counterclockwise order A "diagonal" is a line segment connecting two non-adjacent extreme points.)

2. a. [10] Present a combinatorial argument that for all $n \geq 1$:

$$
(2 n-1) \cdot(2 n-3) \cdots 3 \cdot 1=\frac{(2 n)!}{n!2^{n}}
$$

Consider the set of all partitions of a set of cardinality $2 n$ into n pairs. For the left side, begin with any permutation of the $2 n$ elements. The first element on the permutation is in some pair and there are $2 n-1$ choices for its pair-mate. Removing these two from the permutation, the next element permutation is also in some pair and there are $2 n-3$ choices for its pair-mate. The process continues until there are just two elements left in the permutation, and they form the last pair. This yields $(2 n-1) \cdot(2 n-3) \cdots 3 \cdot 1$ different such partitions. Now consider the right hand side. There are ($2 n$)! different permutations of the of the $2 n$ elements. Pair the first element with the second, the third with the fourth, etc. This yields a partition into n pairs. However, the order among the n pairs is irrelevant to the partition and thus for every array of pairs there are 2^{n} different permutations. Lastly, the order among the pairs, is also irrelevant, so a set of pairs could be arranged in n ! different orders. Thus the number of partitions into pairs that ignores order within and among pairs is $\frac{(2 n)!}{n!2^{n}}$ and this must equal $(2 n-1) \cdot(2 n-3) \cdots 3 \cdot 1$.
b. [10] Present a combinatorial argument that for all nonegative integers k and n satisfying $k \leq n-2$

$$
\binom{n+2}{k}=\binom{n}{k}+2\binom{n}{k-1}+\binom{n}{k-2}
$$

Let set A have cardinality n and b and c be distinct elements not contained in A. Consider the subsets of $A \cup\{b\} \cup\{c\}$ of cardinality k. For the left hand side, we recognize that $A \cup\{b\} \cup\{c\}$ has cardinality $n+2$, so there are $\binom{n+2}{k}$ such subsets. Alternatively, consider that a subset wither has all k elements coming from A, exactly $k-1$ elements coming from A, or A, exactly $k-2$ elements coming from A. If all k elements come from A, there are $\binom{n}{k}$. If exactly $k-1$ elements come from A, there are $\binom{n}{k-1}$ ways to select those elements and then two choices, b or, to complete the subset. If exactly $k-2$ elements come from A, there $\operatorname{are}\binom{n}{k-2}$ ways to select those elements and then both b and must be selected to complete the subset. The total is $\binom{n}{k}+2\binom{n}{k-1}+\binom{n}{k-2}$ and this must equal $\binom{n+2}{k}$.
3. Present a combinatorial argument that for all positive values of m, n, and r.

$$
\binom{m+n}{r}=\sum_{k=0}^{r}\binom{m}{r-k}\binom{n}{k}
$$

Consider distinct sets A and B of cardinalities m and n, respectively. There are $\binom{m+n}{r}$ subset of $A \cup B$ of size r. Alternatively, for any such subset, there must be some $r-k$ elements of A and k elements of B for a value of k between 0 and r. For a fixed k there are $\binom{m}{r-k}\binom{n}{k}$ such subsets and thus $\sum_{k=0}^{r}\binom{m}{r-k}\binom{n}{k}$ overall.
3. a. [10] Using a combinatorial argument, prove that for $n \geq 1$:

$$
\sum_{k=1}^{n} k\binom{n}{k}\binom{n}{n-k}=n\binom{2 n-1}{n-1}
$$

(Hint: Let A and B be disjoint sets of cardinality n. Consider pairs $\langle C, a\rangle$ where $C \subseteq A \cup B, C$ has cardinality n, and $a \in C \cap A$.)

Using the notation of the hint, first choose a and then choose $C \sim\{a\}$. There are n choices for a (since $\# A=n$) and there remain $2 n-1$ elements in $A \cup B \sim\{a\}$. Thus, there are $n\binom{2 n-1}{n-1}$ total choices. Alternatively, let $k=\#(A \cap C)$. The value of k can range from 1 (since $a \in A \cap C$) to n. For a fixed k, there are $\binom{n}{k}$ choices for $A \cap C, k$ choices from that for a, and $\binom{n}{n-k}$ choices for $C \cap B$. The total is $\sum_{k=1}^{n} k\binom{n}{k}\binom{n}{n-k}$
b. [10] Using a combinatorial argument, prove that for $n \geq 1$:

$$
\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}
$$

Using the same notation as above, consider choosing just a set $C \subseteq A \cup B$ of cardinality n, There are $\binom{2 n}{n}$ such choices. Alternatively, let k, be the number of elements in $A \cap C: \mathrm{k}$ can range from 0 to n. For a fixed k, there are $\binom{n}{k}$ ways of choosing $A \cap C$, and since there are n-k elements in $B \cap C$ there are k elements in $B \sim C$, and hence $\binom{n}{k}$ ways of choosing them. Choosing $B \sim C$ however is equivalent to choosing
$B \cap C$ and thus there are $\binom{n}{k}$ ways to choose $B \cap C$. The total is $\sum_{k=0}^{n}\binom{n}{k}^{2}$ and this must equal $\binom{2 n}{n}$.
3. a. [10] Using a combinatorial argument, prove that for $n \geq 2$ and $m \geq 2$:

$$
\binom{n+m}{2}=n \cdot m+\binom{n}{2}+\binom{m}{2}
$$

Let A and B be disjoint sets of cardinalities n and m, respectively. We seek to determine how many subsets of two elements there are in $A \cup B$. Since the cardinality of $A \cup B$ is $n+m$, there are $\binom{n+m}{2}$ such subsets. Alternatively, we could obtain such a subset by selecting one element from each of A and B, by selecting both elements from A, or by selecting both elements from B. There are $n m+\binom{n}{2}+\binom{m}{2}$ ways of doing this and, therefore $\binom{n+m}{2}=n m+\binom{n}{2}+\binom{m}{2}$.
b. [10] Using a combinatorial argument, prove that for integers $m, n, p \geq 1$:

$$
(n+m)^{p}=\sum_{k=0}^{p}\binom{p}{k} n^{k} m^{p-k}
$$

Let A and B be disjoint sets of cardinalities n and m, respectively. We seek to determine how many strings of length p there are consisting of elements of $A \cup B$. Since the cardinality of $A \cup B$ is $n+m$, there are $n+m$ options for each of p positions in the sequence, so there are $(n+m)^{p}$ such sequences. Alternatively, let k denote the number of positions in the sequence occupied by elements of A. The value of k varies from 0 to p. For a fixed value of k, there are $\binom{p}{k}$ ways to select these positions and then n options for each of the k positions. For each of the $p-k$ positions occupied by elements of B, there are m options, thus $\binom{p}{k} n^{k} m^{p-k}$ for the fixed value of k and $\sum_{k=0}^{p}\binom{p}{k} n^{k} m^{p-k}$ overall. This must equal $(n+m)^{p}$.
3. a. [10] Using a combinatorial argument, prove that for $n \geq 2$ and $m \geq 2$:

$$
\binom{n+m}{2}=n \cdot m+\binom{n}{2}+\binom{m}{2}
$$

Consider subsets of two elements from the union of disjoint subsets A and B with cardinalities n and m, respectively. Since $\#(A \cup B)=n+m$, there are $\binom{n+m}{2}$ subsets of size two. Alternatively, consider that either one element comes from each of A and B, both from A, or both from B. These can be done in $n \cdot m,\binom{n}{2}$, and $\binom{m}{2}$ ways, respectively, and the total is $n \cdot m+\binom{n}{2}+\binom{m}{2}$. We conclude that $\binom{n+m}{2}=n \cdot m+\binom{n}{2}+\binom{m}{2}$
b. [10] Using a combinatorial argument, prove that for $n \geq 1$:

$$
\sum_{k=1}^{n} k\binom{n}{k}=n 2^{n-1}
$$

(Hint: Let A be a set of cardinality n. Consider pairs $\langle B, a\rangle$ where $B \subseteq A$ and $a \in A \sim B$.)
Employing the notation from the hint, and considering the left side of the equation first, there are n choices for a and then 2^{n-1} subsets from the remaining $n-1$ elements. Alternatively, let k be the number of elements in $\{a\} \cup B$. The value of k could range from 1 through n. For a fixed value of k, there are $\binom{n}{k}$ ways to choose $\{a\} \cup B$, and then k choices from this for a (with the remaining chosen elements forming B). There are $\sum_{k=1}^{n} k\binom{n}{k}$ total ways of doing this and this must equal $n 2^{n-1}$.
3. a. [10] Using a combinatorial argument, prove that for $n \geq 1$ and $m \geq 2$:

$$
\sum_{k=0}^{n}\binom{n}{k}(m-1)^{n-k}=m^{n}
$$

Consider strings of length n selected from the integers $\{1,2, \ldots, m\}$ with repetition allowed. For each of n positions there are m choices, so there are m^{n} such strings. Alternatively, let k indicate the number of copies of m in the string. The value of k varies from 0 to n. For a fixed value of k there are $\binom{n}{k}$ selections for the placement of the $m \mathrm{~s}$ and then $(m-1)$ choices for the integers $\{1,2, \ldots, m-1\}$ in
each of the $n-k$ remaining positions. Thus there are $\binom{n}{k}(m-1)^{n-k}$ such strings with k copies of m, and $\sum_{k=0}^{n}\binom{n}{k}(m-1)^{n-k}$ overall. This must equal m^{n}.
b. [10] Using a combinatorial argument, prove that for $n \geq k \geq 0$:

$$
\binom{n}{k} k!(n-k)!=n!
$$

Consider permutations of length n selected from the integers $\{1,2, \ldots, n\}$. There are n ! such permutations. Alternatively, let k satisfy $n \geq k \geq 0$ and for any permutation first select the positions to be occupied by $\{1,2, \ldots, k\}$. There are $\binom{n}{k}$ such selections. Now permute the values $\{1,2, \ldots, k\}$ - there are k ! such permutations. Finally, permute the $n-k$ values $\{k+1, k+2, \ldots, n\}$, which can be done in $(n-k)$! ways, and place them into the positions of the permutation notoccupied by the values from $\{1,2, \ldots, k\}$. Thus, there are $\binom{n}{k} k!(n-k)$! such permutations and this must equal $n!$.

