
4. [10] Using a combinatorial argument, prove that for : n ≥ 1
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Let   and A B  be disjoint sets of cardinality n  each and C A B= ∪
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subset without repletion not with concern for order  so there are   such 
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Let A = {a, b, c} and consider all strings of length n using elements of A.  Since there are 
three options for each component of the string, there are 3  such strings.  Alternatively, 
consider first consider the positions of any c's in the string. Let k represent the number of 
non-c's (i.e., a's and b's) in the string. Clearly k could range from 0 through n. For a fixed 

value of k, there are  ways to choose the positions for the non-c's . Then for each of 

the k positions, there are two options (i.e., a or b) for the character in the position. The 

remaining n-k positions must be occupied by c's. Thus there are    ways to assign 

elements to the positions with k non-c's. The total is  and this must equal 3  
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 b. [10] Present a combinatorial argument that for all nonnegative integers p, s, and n 
satisfying nsp ≤+   
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(Hint: Consider choosing two subsets.)  



 
Let a set A have n elements and consider how many ways there are to select disjoint 
subsets B and C of A so that B has p elements and C has s elements. First we could select 
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2. a. [10] Present a combinatorial argument that for all n :  1≥
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(Note: The summation begins with 1=k .) 
 

Consider the cardinality of the set of non-empty subsets of a set A of n elements.  
For each element of A, there are two options: either be present in a subset or not. 
Thus there are  total subsets but one of these is empty so there are  non-
empty subsets of A.  Alternatively, let k indicate the cardinality of the subset. Since 
we are counting non-empty subsets, k ranges from 1 to n.  For a fixed value of k, 

there are  ways of selecting the k subset elements from the n total elements of 

A.  Adding this to include all possible cases of k, we obtain and this must 

equal . 
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b. [10] Present a combinatorial argument that for all integers k  and n satisfying  nk ≤≤3
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(Hint: Consider three special elements.)  
 

Consider the number of subsets of size k of a set B of cardinality n.  Since n , we 
may select three elements b  of B and let C = B . Thus C has 

cardinality n-3 and B = C∪ .  We know there are  such subsets.  

Alternatively, to select k elements of B for a subset there are four options: all k come 
from C, k-1 come from C and the kth is either b  or , k-2come from C and 
the k-1st and kth are exactly two of  or , or k-3 come from C and all of 

 and b  are present.  For the first option, there are  possibilities since 

all k come from C.  For the second option, there are  possibilities, since k-1 

elements are selected from C and one from the three of b  or b .  For the third 

option, there are  possibilities, since k-2 elements are selected from C and 

one from the three of  or  is not selected.  Lastly, if k-3 come from C and 

all of b  and b  are present, then there are 
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 and this must equal 
  

3≥
321 ,, bb

,,{ 21 bb






,2b 3b





+




−
−

2
3

k
n

},,{~ 321 bbb









k
n

3b








 −
k
n 3









−
−

1
3

3
k
n

,, 21 b











k
n

}3b

,1b

−
−

3
3

,, 21 b

3b

 −
−

3
3

k
n

,2b






,, 21 bb




 − 3
k
n

3

,





k
n

3





−
−

2
3

3
k
n

,1b

3





+



 3
1
3

k
n

, 21 b

+


 3
−
−

 
3. [10] Present a combinatorial argument that for all positive integers  and , satisfying 

:  
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(Hint: Consider selecting from two sets.) 
 

Let  and A B  be disjoint sets of cardinalities  and , respectively.  Let 
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number of elements in a subset that came from . The value of  can range from 
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3. [10] Present a combinatorial argument that for all positive integers  :  n
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Consider as a model strings of length  using the characters from the set { , .  
For each  positions there are 3 options so there are 3  such strings.  Alternatively, 
let k  represent the number of positions in the string not occupied by  (i.e., thus, 
occupied by either b  or ).  The value of k can vary between 0 and n .  For a fixed 

number  of b s and s, there are 
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Examination 1 Solutions 

CS 336 
 
1. [5] For n  how many diagonals does a convex polygon with n extreme points have? 
(Consider a convex polygon given by extreme points ..., nP >  in counterclockwise 
order A “diagonal” is a line segment connecting two non-adjacent extreme points.)  
 

)

 
For each of the n extreme points there are n-3 distinct extreme 
points that non-adjacent. This would yield n n  endpoints of 
the diagonals. Since each diagonal has two endpoints, there are 

( 3

( 3
2

n n − )  diagonals of a convex polygon with n extreme points. 

 
 

2. a. [10] Present a combinatorial argument that for all n :  
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Consider the set of all partitions of a set of cardinality  into n pairs.  For the left 
side, begin with any permutation of the  elements. The first element on the 
permutation is in some pair and there are 2

2n
2n

1n −  choices for its pair-mate. Removing 
these two from the permutation, the next element permutation is also in some pair 
and there are  choices for its pair-mate. The process continues until there are 
just two elements left in the permutation, and they form the last pair.  This yields 

 different such partitions. Now consider the right hand side. 
There are  different permutations of the of the  elements. Pair the first 
element with the second, the third with the fourth, etc. This yields a partition into n 
pairs.  However, the order among the n pairs is irrelevant to the partition and thus 
for every array of pairs there are  different permutations. Lastly, the order among 
the pairs, is also irrelevant, so a set of pairs could be arranged in  different orders. 
Thus the number of partitions into pairs that ignores order within and among pairs is 
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b. [10] Present a combinatorial argument that for all nonegative integers k and n satisfying 
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Let set  have cardinality  and b  and  be distinct elements not contained in . 
Consider the subsets of  of cardinality .  For the left hand side, we 

recognize that  has cardinality
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3. Present a combinatorial argument that for all positive values of m, n, and r:  
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Consider distinct sets A and B of cardinalities m and n, respectively. There are  
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elements of A and k elements of B for a value of k between 0 and r. For a fixed k there 
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3. a. [10] Using a combinatorial argument, prove that for : n ≥ 1
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(Hint: Let A and B be disjoint sets of cardinality n. Consider pairs <C, a> where 
C A B⊆ ∪ , C has cardinality n, and a C A∈ ∩ .) 

 
Using the notation of the hint, first choose a  and then choose . There are n 
choices for  (since ) and there remain 2n-1 elements in . Thus, 

there are  total choices. Alternatively, let 
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b. [10] Using a combinatorial argument, prove that for : n ≥ 1
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Using the same notation as above, consider choosing just a set C  of cardinality 

n, There are  such choices.  Alternatively, let k be the number of elements in 

: k can range from 0 to n. For a fixed k, there are  ways of choosing , 
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Let  and A  be disjoint sets of cardinalities  and , respectively.  We seek to 
determine how many subsets of two elements there are in .  Since the 

cardinality of  is , there are  such subsets.  Alternatively, we 

could obtain such a subset by selecting one element from each of  and 

m
A∪

A B∪ m 

B , by 
selecting both elements from , or by selecting both elements from A .  There are 

 ways of doing this and, therefore . 
2 2
n m








n m m



nm 
 
 

+ 
+
 2





p k

 
 
b. [10] Using a combinatorial argument, prove that for integers : , ,m n p
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Let  and A  be disjoint sets of cardinalities  and , respectively.  We seek to 
determine how many strings of length 

m
p  there are consisting of elements of . 
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Consider subsets of two elements from the union of disjoint subsets  and A B  with 
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b. [10] Using a combinatorial argument, prove that for : n ≥ 1
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(Hint: Let A be a set of cardinality n. Consider pairs <B, a> where  and .) AB ⊆ BAa ~∈
 

Employing the notation from the hint, and considering the left side of the equation 
first, there are  choices for a  and then  subsets from the remaining  
elements.  Alternatively, let  be the number of elements in { . The value of 

 could range from 1 through n .  For a fixed value of , there are  ways to 

choose{ , and then k  choices from this for  (with the remaining chosen 

elements forming 

n
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B ). There are  total ways of doing this and this must 

equal .  
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3. a. [10] Using a combinatorial argument, prove that for n  and m : ≥ 1 2≥
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Consider strings of length  selected from the integers {  with repetition 
allowed.  For each of  positions there are  choices, so there are  such strings.  
Alternatively, let  indicate the number of copies of m  in the string.  The value of 

 varies from  to .  For a fixed value of k  there are  selections for the 

placement of the m s and then (

n 1,2,..., }m

n
k
 
 
 
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k 0 n
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each of the  remaining positions. Thus there are  such strings 

with  copies of , and 
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 overall. This must equal m .  n
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b. [10] Using a combinatorial argument, prove that for : n k≥

!n  

 
Consider permutations of length  selected from the integers { .  There are 

 such permutations.  Alternatively, let  satisfy n k  and for any 

permutation first select the positions to be occupied by { . There are  

such selections.  Now permute the values {  - there are  such 
permutations.  Finally, permute the n

!n
n
k
 
 
 

,2,...,k}
 values { 1+ , which can be 

done in (  ways, and place them into the positions of the permutation 

notoccupied by the values from { .  Thus, there are  such 

permutations and this must equal .  
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