Theorem: For $p>0$ and $b>1, n^{p}=o\left(b^{n}\right)$.

Proof:

(This proof assumes that $b>2$. It is left as an exercise how to alter it for $b>1$.) Let $\bar{b}=b / 2$. We know that since $\bar{b}>1, \log _{\bar{b}} n=o(n)$. That says that given $\bar{\varepsilon}>0$, there exists an \bar{N} so that for $n \geq \bar{N},\left|\log _{\bar{b}} n\right| \leq \bar{\varepsilon}|n|$. In particular, let $\bar{\varepsilon}=\frac{1}{p}$ and \bar{N} be such that for $n \geq \bar{N},\left|\log _{\bar{b}} n\right| \leq \frac{1}{p}|n|$. Notice then that $n \leq \bar{b}^{\bar{\varepsilon} n}$ and $\left|n^{p}\right|=n^{p} \leq \bar{b}^{\bar{\varepsilon}} p n=\bar{b}^{n}=\left(\frac{b}{2}\right)^{n}=\frac{b^{n}}{2^{n}}=\frac{1}{2^{n}}\left|b^{n}\right|$. Given $\varepsilon>0$, select $N=\max \left\{\bar{N},-\log _{2} \varepsilon\right\}$. For $n \geq N$, we have both $n \geq \bar{N}$ and $n \geq-\log _{2} \varepsilon$, so, in particular, $\frac{1}{2^{n}} \leq \varepsilon$. Combining this with above we have, for all $n \geq N,\left|n^{p}\right| \leq \varepsilon\left|b^{n}\right|$.

Discovery:

What is above is the proof and no more need be said unless one wonders how the proof was created. To see that imagine that I began with using $\log _{\bar{b}} n=o(n)$, thus knowing that for some \bar{N} $n \geq \bar{N}$ guarantees that $\left|\log _{\bar{b}} n\right| \leq \bar{\varepsilon}|n|$. At that point I did not know how to relate $\bar{N}, \bar{\varepsilon}$, and \bar{b} to the parameters of the original item to prove. That is, how are $\bar{N}, \bar{\varepsilon}$, and \bar{b} related to N, ε, b, and p when I attempt to conclude that for any $\varepsilon>0$, there is an N such that for all $n \geq N,\left|n^{p}\right| \leq \varepsilon\left|b^{n}\right|$? I had to try to make one look like the other. This is scratch paper time. Let's dispense with absolute values for the moment - we can confirm later if that's ok but they just clutter things on scratch paper for now.

We have $\log _{\bar{b}} n \leq \bar{\varepsilon} n$ so that can be transformed to $n \leq \bar{b}^{\bar{\varepsilon} n}$ and to $n^{p} \leq\left(\bar{b}^{\bar{\varepsilon} n}\right)^{p}=\bar{b}^{p \bar{\varepsilon} n}$, which is beginning to look like what I need. What I'd like is to relate $\bar{\varepsilon}$ and \bar{b} to ε, b, and p in such a way that $n^{p} \leq \bar{b}^{p \bar{\varepsilon} n}$ looks like $n^{p} \leq \varepsilon b^{n}$. First I set $\bar{\varepsilon}=\frac{1}{p}$. That gives me $n^{p} \leq \bar{b}^{n}$. Now I have to construct a relation between \bar{b}, b, and ε so that $\bar{b}^{n} \leq \varepsilon b^{n}$. The chain of inequalities would then give me $n^{p} \leq \bar{b}^{n} \leq \varepsilon b^{n}$ which is what I need. But that just says I need $\frac{\bar{b}^{n}}{b^{n}} \leq \varepsilon$ which is easy for sufficiently large n if $\frac{\bar{b}}{b}=\frac{1}{2}$. That's equivalent to having $\bar{b}=b / 2$ and the "sufficiently large n " is satisfied if $\frac{1}{2^{n}} \leq \varepsilon$. That means $n \geq-\log _{2} \varepsilon$. The argument reverses and results in the proof above.
(Hint for constructing the proof for $b>1$: Can you relate \bar{b}, b, and ε in such a way that you can still make $\frac{\bar{b}^{n}}{b^{n}} \leq \varepsilon$ for sufficiently large values of n ?)

