Theorem: For p > 0 and b > 1, $n^p = o(b^n)$.

Proof:

(This proof assumes that b > 2. It is left as an exercise how to alter it for b > 1.) Let $\overline{b} = b/2$. We know that since $\overline{b} > 1$, $\log_{\overline{b}} n = o(n)$. That says that given $\overline{\varepsilon} > 0$, there exists an \overline{N} so that for $n \ge \overline{N}$, $|\log_{\overline{b}} n| \le \overline{\varepsilon} |n|$. In particular, let $\overline{\varepsilon} = \frac{1}{p}$ and \overline{N} be such that for $n \ge \overline{N}$, $|\log_{\overline{b}} n| \le \frac{1}{p} |n|$. Notice then that $n \le \overline{b}^{\overline{\varepsilon}n}$ and $|n^p| = n^p \le \overline{b}^{\overline{\varepsilon}pn} = \overline{b}^n = \left(\frac{b}{2}\right)^n = \frac{b^n}{2^n} = \frac{1}{2^n} |b^n|$. Given $\varepsilon > 0$, select $N = \max{\overline{N}, -\log_2 \varepsilon}$. For $n \ge N$, we have both $n \ge \overline{N}$ and $n \ge -\log_2 \varepsilon$, so, in particular, $\frac{1}{2^n} \le \varepsilon$. Combining this with above we have, for all $n \ge N$, $|n^p| \le \varepsilon |b^n|$.

Discovery:

What is above is the proof and no more need be said unless one wonders how the proof was created. To see that imagine that I began with using $\log_{\bar{b}} n = o(n)$, thus knowing that for some \bar{N} $n \ge \bar{N}$ guarantees that $|\log_{\bar{b}} n| \le \bar{\varepsilon} |n|$. At that point I did not know how to relate $\bar{N}, \bar{\varepsilon}$, and \bar{b} to the parameters of the original item to prove. That is, how are $\bar{N}, \bar{\varepsilon}$, and \bar{b} related to N, ε, b , and p when I attempt to conclude that for any $\varepsilon > 0$, there is an N such that for all $n \ge N, |n^p| \le \varepsilon |b^n|$? I had to try to make one look like the other. This is scratch paper time. Let's dispense with absolute values for the moment – we can confirm later if that's ok but they just clutter things on scratch paper for now.

We have $\log_{\overline{b}} n \le \overline{\varepsilon} n$ so that can be transformed to $n \le \overline{b}^{\overline{\varepsilon} n}$ and to $n^p \le (\overline{b}^{\overline{\varepsilon} n})^p = \overline{b}^{p\overline{\varepsilon} n}$, which is beginning to look like what I need. What I'd like is to relate $\overline{\varepsilon}$ and \overline{b} to ε, b , and p in such a way that $n^p \le \overline{b}^{p\overline{\varepsilon} n}$ looks like $n^p \le \varepsilon b^n$. First I set $\overline{\varepsilon} = \frac{1}{p}$. That gives me $n^p \le \overline{b}^n$. Now I have to construct a relation between $\overline{b}, b, and \varepsilon$ so that $\overline{b}^n \le \varepsilon b^n$. The chain of inequalities would then give me $n^p \le \overline{b}^n \le \varepsilon b^n$ which is what I need. But that just says I need $\frac{\overline{b}^n}{b^n} \le \varepsilon$ which is easy for sufficiently large n if $\frac{\overline{b}}{b} = \frac{1}{2}$. That's equivalent to having $\overline{b} = b/2$ and the "sufficiently large n" is satisfied if $\frac{1}{2^n} \le \varepsilon$. That means $n \ge -\log_2 \varepsilon$. The argument reverses and results in the proof above. (Hint for constructing the proof for b > 1: Can you relate \overline{b}, b , and ε in such a way that you can still make $\frac{\overline{b}^n}{b^n} \le \varepsilon$ for sufficiently large values of n?)