- **1.** Given floating point numbers a,b, and c such that both a+b and fl(a+b)+c are in range then there exist real numbers $\overline{a},\overline{b}$, and \overline{c} so that $fl((a+b)+c)=(\overline{a}+\overline{b})+\overline{c}$, where for some $\mathbf{e}_a,\mathbf{e}_b$, and \mathbf{e}_c satisfying $|\mathbf{e}_a|\leq 2\mathbf{e}_0+\mathrm{O}(\mathbf{e}_0^2)$, $|\mathbf{e}_b|\leq 2\mathbf{e}_0+\mathrm{O}(\mathbf{e}_0^2)$, and $|\mathbf{e}_c|\leq \mathbf{e}_0$, we have $\overline{a}=a(1+\mathbf{e}_a)$, $\overline{b}=b(1+\mathbf{e}_b)$, and $\overline{c}=c(1+\mathbf{e}_c)$.
- **2.** Given floating point numbers a,b,c, and d such that $a \cdot b,c/d$ and $fl(a \cdot b) + fl(c/d)$ are in range then there exist real numbers $\overline{a},\overline{b},\overline{c}$ and \overline{d} so that $fl(a \cdot b + c/d) = \overline{a} \cdot \overline{b} + \overline{c}/\overline{d}$, where for some $\mathbf{e}_a, \mathbf{e}_b, \mathbf{e}_c$, and \mathbf{e}_d satisfying $|\mathbf{e}_a| \leq 2\mathbf{e}_0 + \mathrm{O}(\mathbf{e}_0^2)$, $|\mathbf{e}_b| \leq 2\mathbf{e}_0 + \mathrm{O}(\mathbf{e}_0^2)$, $|\mathbf{e}_c| \leq 2\mathbf{e}_0 + \mathrm{O}(\mathbf{e}_0^2)$, and $|\mathbf{e}_d| \leq 2\mathbf{e}_0 + \mathrm{O}(\mathbf{e}_0^2)$, we have $\overline{a} = a(1 + \mathbf{e}_a), \overline{b} = b(1 + \mathbf{e}_b), \overline{c} = c(1 + \mathbf{e}_c)$, and $\overline{d} = d(1 + \mathbf{e}_d)$.