
Convergence Theorems for Two Iterative Methods 
 
A stationary iterative method for solving the linear system: 
 Ax b=  (1.1) 
 
employs an iteration matrix B and constant vector c  so that for a given starting estimate 

0x  of ,x  for  0,1, 2,...k =
 1k kx Bx c+ = + . (1.2) 
 
For such an iteration to converge to the solution x  it must be consistent with the original 
linear system and it must converge. To be consistent we simply need for x  to be a fixed 
point – that is: 
 x Bx c= + . (1.3) 
Since that is equivalent to ( )I B x c− = , the consistence condition can be stated independ-
ent of x  by saying 
 1( )A I B c b− .− =  (1.4) 
 
The easiest way to develop a consistent stationary iterative method is to split the matrix A : 
 A M N= +  (1.5) 
 
then rewrite Ax b=  as 
 Mx Nx b= − + . (1.6) 
The iteration will then be 
 1k kMx Nx+ b= − + . (1.7) 
 
Recasting this in the form above we have 

1B M N−= −  and . 1c M b−=
It is easy to show that this iteration is consistent for any splitting as long as M is non-
singular. Obviously, to be practical the matrix M  must be selected so that the system 
My d=  is easily solved. Popular choices for M  are diagonal matrices (as in the Jacobi 
method), lower triangular matrices (as in the Gauss-Seidel and SOR methods), and tridi-
agonal matrices. 
 
Convergence: 
 
Thus, constructing consistent iterations is easy – the difficult issue is constructing conver-
gent consistent iterations. However, notice that if is equation (1.3) subtracted from equa-
tion (1.2) we obtain 
 , (1.8) 1ke B+ = ke
where  is the error ke kx x− . 
 
Our first result on convergence follows immediately from this. 
 
Theorem 1: 



 
The stationary iterative method for solving the linear system:  

1k kx Bx c+ = +  for 0,1, 2,...k =   
converges for any initial vecrtor 0x if 1B < for some matrix norm that is consistent with a 

vector norm 
 
Proof: 
 
Let .  be a matrix norm consistent with a vector norm .  and such that 1B < . 

We then have  
 1k ke Be B e+ = ≤ k  (1.9) 

and a simple inductive argument shows that in general 

 0kke B e≤ . (1.10) 

Since 1B < , ke   must converge to zero (and thus kx  converge to x ) independent of e . 
 

0

 
This theorem provides a sufficient condition for convergence. Without proof we offer this 
theorem that provides both necessary and sufficient conditions for convergence. It em-
ploys the spectral radius of a matrix: 

( )Aρ = the absolute value of the largest eigenvalue of  in absolute value. A
 
Theorem 2: 
 

The stationary iterative method for solving the linear system:  
1k kx Bx c+ = +  for 0,1, 2,...k =   

converges for any initial vector 0x if and only if ( ) 1Bρ < . 
 
The easiest way to prove this uses the Jordan Normal Form of the matrix B . Notice that 
the theorem does not say that if ( ) 1Bρ ≥ the iteration will not converge. It says that if 

( ) 1Bρ ≥  the iteration will not converge for some initial vector 0x .  In practical terms 
though the difference is minor: the only way to have convergence with ( )B 1ρ ≥  is to have 

an initial error e  having no component in any direction of an eigenvector of 0 B  corre-
sponding to an eigenvalue at least one in absolute value. This is a probability zero event. 
 
The following theorem uses Theorem 1 to show the Jacobi iteration converges if the matrix 
is strictly row diagonally dominant. Recall that Jacobi iteration is 
 1

,(k k
i i i j i

j i
,) / i ix b a x a+

≠

= −∑       for i 1,2,...,n=  (1.11) 

and that strict row diagonal dominance says that  
 ,i j i i

j i
a a

≠

<∑ , n     for 1,2,...,i = . (1.12) 



The splitting for the Jacobi method is ( )A D L U= + + , where  and U  are the di-
agonal, strict lower triangle, and strict upper triangle of the matrix, respectively. Thus the 
iteration matrix is . 

, ,D L

1( )D L U−− +
 
Theorem 3: 
 

The Jacobi iterative method 
 1

,(k k
i i i j i

j i
,) / i ix b a x a+

≠

= −∑       for i n1,2,...,=  

for solving the linear system Ax b=  converges for any initial vector 0x if the matrix  is 
strictly row diagonally dominant. 

A

 
Proof: 
 
Let .

∞
 indicate the infinity vector norm as well as its subordinate matrix norm. To prove 

the theorem it suffices to show 1( )D L U−

∞
1− +

1( )D L U−− +

< . To that end consider the row sums in 

absolute values of the matrix . These are 
,

,

,i j

j i i i

a
a≠

∑  but property (1.12) guar-

antees that this is strictly less than one. The maximum of the row sums in absolute value 
is also strictly less than one, so 1D L− ( )U

∞
1− + <

,
k

i i

 as well.   

 
The next theorem uses Theorem 2 to show the Gauss-Seidel iteration also converges if the 
matrix is strictly row diagonally dominant. Recall that Gauss-Seidel iteration is 
 1 1

, ,(k k
i i i j i i j i

j i j i
) /x b a x a x a+ +

< >

= − −∑ ∑       for i 1,2,...,n=  (1.13) 

The splitting for the Gauss-Seidel method is ( )A L D U= + + , . Thus the iteration matrix is 

. 1( )L D U−− +
 



Theorem 4: 
 

The Gauss-Seidel iterative method 
 1 1

, ,(k k
i i i j i i j i

j i j i
,

k
i i) /x b a x a x a+ +

< >

= − −∑ ∑       for i n1,2,...,=  

for solving the linear system Ax b=  converges for any initial vector 0x if the matrix A  is 
strictly row diagonally dominant. 

 
Proof: 
 
According to Theorem 2, it suffices to show 1( ( ) ) 1.L D Uρ −− + <  To that end let  be any 

eigenvector corresponding to an eigenvalue 

v
λ  of − +  such 1( )L D − U

1( ( ) ).L D Uλ ρ −= − +  We shall show 1λ <  and thus 1)−( (L Dρ ) 1.U− + <   We have 

  
 (Uv L D v)λ= − +  (1.14) 
so 
 1( )L D Uv vλ−− + = . (1.15) 
In a component fashion, this says 
 ,i j j i j j

j i j i
a v a vλ

> ≤

= − ,∑ ∑ . (1.16) 

Let  denote an index of  corresponding to the largest component in absolute value. 
That is  

m v

 { }maxm j
v = jv  (1.17) 

so 

 1.j

m

v
v

≤  (1.18) 

We also have for row  in particular m

 

, ,

,

, ,

, ,

, ,

m j j m j j
j m j m

m j j
j m

m m m m j j
j m

m m m m j j
j m

m m m m j j
j m

a v a v

a v

a v a v

a v a v

a v a v

λ

λ

λ

λ

> >

≤

<

<

<

≥

=

= +

 
≥ −  

 
 

≥ − 
 

∑ ∑

∑

∑

∑

∑

 

Dividing by the necessarily positive values ,m ma  and mv , we have 



 
, , ,

, , ,

1 1m j m j j m j j m j
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 (1.19) 

so 
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But since 
,

,

1m j

j m m m

a
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<∑ , it follows that  
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and 
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It is easy to show that 

,
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 so the bound on the spectral radius 

iteration matrix of the Gauss-Seidel method is strictly less than the bound of the infinity 
norm of the iteration matrix of the Jacobi method. That does not guarantee that the 
Gauss-Seidel iteration always converges faster than the Jacobi iteration. However, it is 
often observed in practice that Gauss-Seidel iteration converges about twice as fast as the 

Jacobi iteration. To see this, imagine that ,

, ,

m j m j

j m j mm m m m

a a
a a> <

≈∑ ∑ , . Call this quantity 1
2

θ− . 

We have 0θ >  and, if θ  is small, then

,

,

,

,

1 4

1

m j

j m m m

m j

j m m m
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θ
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≈ −

−

∑

∑
. Yet 

,

,

1 1( ) ( ) 1 2
2 2

m j

j m m m

a
a

θ θ
≠

+ − = −∑ θ≈ − , and if we imagine for , ,

, ,

maxm j i j

ij m j im m i i

a a
a a≠ ≠

  ≈  
  

∑ ∑ , 

then our bound for the norm of the Jacobi iteration matrix is 1 2θ−  while our bound on 
the spectral radius iteration matrix of the Gauss-Seidel method is 1 4θ− .  



 

Notice that if the iteration converges as 
0

k
k

e

e
σ≈ , for some factor ,σ  then to reduce 

0

ke

e
 to some tolerance ε  requires a value of  of about k ln

ln
ε
σ

. If 1,σ ≈ then 

ln (1 )σ σ≈ − −  so we estimate about ln
(1 )

ε
σ

−
−

 steps.  With Jacobi we have ln ln
1 2

ε ε
σ θ

− −
≈

−
 

but with Gauss-Seidel we have ln ln
1 4

ε ε
σ θ

− −
≈

−
which justifies the claim that Jacobi con-

verges twice as fast. 
 
Lastly, without proof we state another theorem for convergence of the Gauss-Seidel itera-
tion. 
 
Theorem 5: 
 

The Gauss-Seidel iterative method 
 1 1

, ,(k k
i i i j i i j i

j i j i
,

k
i i) /x b a x a x a+ +

< >

= − −∑ ∑       for i n1,2,...,=  

for solving the linear system Ax b=  converges for any initial vector 0x if the matrix  is 
symmetric and positive definite. 

A

 
 


