Convergence Theorems for Two Iterative Methods

A stationary iterative method for solving the linear system:

Ax=>b (1.1)

employs an iteration matrix B and constant vector ¢ so that for a given starting estimate
x" of x, for k=0,1,2,...
X' =Bx* +c. (1.2)

For such an iteration to converge to the solution x it must be consistent with the original
linear system and it must converge. To be consistent we simply need for x to be a fixed
point - that is:

x=Bx+c. (1.3)
Since that is equivalent to (/ — B)x = c, the consistence condition can be stated independ-

ent of x by saying

A(I-B)'c=b. (1.4)
The easiest way to develop a consistent stationary iterative method is to split the matrix 4:
A=M+N (1.5)
then rewrite Ax=5b as
Mx=—-Nx+b. (1.6)
The iteration will then be
Mx*" = —Nx"+b. (1.7)

Recasting this in the form above we have

B=-M"'N and c=M"'b.
It is easy to show that this iteration is consistent for any splitting as long as M is non-
singular. Obviously, to be practical the matrix M must be selected so that the system
My =d is easily solved. Popular choices for M are diagonal matrices (as in the Jacobi

method), lower triangular matrices (as in the Gauss-Seidel and SOR methods), and tridi-
agonal matrices.

Convergence:
Thus, constructing consistent iterations is easy - the difficult issue is constructing conver-
gent consistent iterations. However, notice that if is equation (1.3) subtracted from equa-
tion (1.2) we obtain

' = Be*, (1.3)
where €" is the error x* —x.

Obur first result on convergence follows immediately from this.

Theorem 1:



The stationary iterative method for solving the linear system:
X' =Bx" +c for k=0,1,2,...
converges for any initial vecrtor x° if ||B|| < 1for some matrix norm that is consistent with a

vector norm

Proof:

Let || . || be a matrix norm consistent with a vector norm || . || and such that ||B|| <1.
We then have
e =[13<*| <1l (19)
and a simple inductive argument shows that in general
e[ <15] e*] (110

Since ||B|| <1,
[ |

ekH must converge to zero (and thus x* converge to x ) independent of e”.

This theorem provides a sufficient condition for convergence. Without proof we offer this
theorem that provides both necessary and sufficient conditions for convergence. It em-
ploys the spectral radius of a matrix:

p(A) = the absolute value of the largest eigenvalue of 4 in absolute value.

Theorem 2:

The stationary iterative method for solving the linear system:
X' =Bx" +c for k=0,1,2,...
converges for any initial vector x° if and only if p(B)<1.

The easiest way to prove this uses the Jordan Normal Form of the matrix B. Notice that
the theorem does not say that if p(B)>1the iteration will not converge. It says that if
p(B)>1 the iteration will not converge for some initial vector x". In practical terms
though the difference is minor: the only way to have convergence with p(B)>1 is to have

an initial error e’ having no component in any direction of an eigenvector of B corre-
sponding to an eigenvalue at least one in absolute value. This is a probability zero event.

The following theorem uses Theorem 1 to show the Jacobi iteration converges if the matrix
is strictly row diagonally dominant. Recall that Jacobi iteration is
xi! :(bi—Zai’jxik)/ai,i fori=12,...,n (1.11)
J#i
and that strict row diagonal dominance says that
Yla | <|a,| fori=12,..n. (1.12)

J#i



The splitting for the Jacobi method is A=D+(L+U), where D,L, and U are the di-

agonal, strict lower triangle, and strict upper triangle of the matrix, respectively. Thus the
iteration matrix is —D "' (L+U).

Theorem 3:

The Jacobi iterative method
k+1 k .
x, o =(b - E a;, x;)la;, fori=12,...,n

1,j771
J#i

for solving the linear system Ax = b conwverges for any initial vector x° if the matrix A is
strictly row diagonally dominant.

Proof:

Let || . ||w indicate the infinity vector norm as well as its subordinate matrix norm. To prove

the theorem it suffices to show H—Dfl(L+U)H <1. To that end consider the row sums in

\a,,j\

absolute values of the matrix —D ™' (L+U). These are Z

J#i

, but property (1.12) guar-

antees that this is strictly less than one. The maximum of the row sums in absolute value
is also strictly less than one, so H—D‘1 (L+U )H <1 as well. H

The next theorem uses Theorem 2 to show the Gauss-Seidel iteration also converges if the
matrix is strictly row diagonally dominant. Recall that Gauss-Seidel iteration is

X :(bl.—Z:al.’jxik+1 —Zaiﬂjxf)/ai,i fori=1,2,...n (1.13)
J<i J>i

The splitting for the Gauss-Seidel method is 4 =(L+ D)+U, . Thus the iteration matrix is
—~(L+D)'U.



Theorem 4:

The Gauss-Seidel iterative method
xM=0b,=->a, x> a x)la, fori=12,.,n

J<i J>i

for solving the linear system Ax = b conwverges for any initial vector x° if the matrix A is
strictly row diagonally dominant.

Proof:

According to Theorem 2, it suffices to show p(—(L+D)'U) <1. To that end let v be any

eigenvector  corresponding to an eigenvalue A of —(L+D)'U  such
|/1| = p(—~(L+D)'U). We shall show |/1| <1 and thus p(—(L+ D)'U) <1. We have

Uv=-A(L+D)v (1.14)
e

—~(L+D)'Uv=Av. (1.15)
In a component fashion, this says

Da, v, ==Y a,v,. (1.16)

J>i J<i
Let m denote an index of v corresponding to the largest component in absolute value.

That 1s
[ = max v [ (117)

SO

‘—\s (1.18)

We also have for row m in particular

1w |> Z V.
2l | ] = 2 v,
j>m j>m

=42 an;

j<m
=@, v+ 2 a,,;
j<m
> |2 || =| 2 .,
Jj<m
>4 ‘am,mHVVn|_Z‘am,ijj‘]

Jj<m

, we have

m,m

Dividing by the necessarily positive values ‘a



Z‘ mf‘>z‘ '"f‘u W{l Z‘ ’"f‘uJ | |(1 2‘ "”‘J (1.19)

j>m am m‘ j>m Jj<m Jj<m m‘

SO

2 -4

4| < Ll (1.20)

-y D,

j<m am,m‘

But since z ‘am’j‘ <1, it follows that

Jj#Em am,m‘
b ey el e
Jj#m mm Jj<m amm‘ j>m m‘
and
D A,
|
j>m s
4| < o<l |
a, .
-3
Jj<m am,m‘
>
. j>m am,m ‘ ‘ .
It is easy to show that <max so the bound on the spectral radius
a, . J#I ‘
-3
j<m am,m

iteration matrix of the Gauss-Seidel method is strictly less than the bound of the infinity
norm of the iteration matrix of the Jacobi method. That does not guarantee that the
Gauss-Seidel iteration always converges faster than the Jacobi iteration. However, it is
often observed in practice that Gauss-Seidel iteration converges about twice as fast as the

Jacobi iteration. To see this, imagine that Z ‘am,‘/ ‘ ~ Z ‘am,‘/ “ . Call this quantity %— 0.
a a

m,m

j>m m,m‘ j<m

a

m,j

2

j>m am m
We have 6 >0 and, if @ is small, then d . ~1-460. Yet
a

1-> "

Jj<m am,m

Z ‘am,f‘ z(%_6))+(%—6?):1—2H,and if we imagine for Z‘ “ ~max{2‘ ”‘}

Jj#Em am,m‘ Jj#Em J#EI

m,m 1,1

then our bound for the norm of the Jacobi iteration matrix is 1—26 while our bound on
the spectral radius iteration matrix of the Gauss-Seidel method is 1-46.



Notice that if the iteration converges as H ~ o" , for some factor o, then to reduce
e

H to some tolerance ¢ requires a value of £ of about ln_g If o =1, then

'] no

—Iné steps. With Jacobi we have —In¢ ~ ~Ine
(1-0) l-c 260

—-In¢ - —Ine

Ino = —(1-0) so we estimate about

but with Gauss-Seidel we have

which justifies the claim that Jacobi con-

1-c 4
verges twice as fast.

Lastly, without proof we state another theorem for convergence of the Gauss-Seidel itera-
tion.

Theorem 5:

The Gauss-Seidel iterative method
x,.k” = (b, _Za. k! —ZaA .x.k)/ai,i fori=12,...,n

L,j 1 L, 1
J<i J>i
Jor solving the linear system Ax = b converges for any initial vector x° if the matrix A is
symmetric and positive definite.



