
Gaussian Quadrature Rules 
 

Problem: Given a domain of integration Ω  and a 2n parameter class of real-valued functions 

G (where 0)n >  defined on ,Ω  determine { }
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For the rule to be usable, it would advantageous to have jx ∈Ω  since the elements of G  
may not be defined for .jx ∉Ω   
 
Nonlinear Case: If the parameterization of the elements of G  is expressed as 
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Linear Case: If G  is expressed by a basis as 1 2 2, ,..., ng g g , then the equations specifying 
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Notice that even in the linear case, the unknowns { }
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 enter the equations (in general) 

in a nonlinear fashion, so this does not result in a system of 2n  linear equations in 2n  
unknowns.  
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determined, then purely linear equations could be used to obtain { }
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key to what follows. In the case, where Ω is an interval of the real line and G  is a space of 

“trended” polynomials of degree 2 1,n − we can determine first the { }
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To that end, we first consider the notion of a trended polynomial space: Given an interval 
[ , ]a b  and a function v  positive on ( , )a b ,  the space of degree n  polynomials with the 
trend v  is  
 { }| isapolynomialofdegreev

nH v p p n= . 
 



Thus, 2 1
v
nH −  is a linear space of dimension 2 .n  . We will see that these three steps 

determine a Gaussian quadrature rule on  [ , ]a b  for 2 1
v
nH − . 

  
1. Find ng% , a polynomial of degree n  orthogonal to all polynomials of lesser degree 

with respect to the inner product ( , ) ( ) ( ) ( )
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2. Find the zeros of ng%  (there will be n  distinct zeros on ( , )a b  ) and set { } 1
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these zeros. 
 

3. Solve the linear system 
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The polynomial ng% can be found by applying the Gram-Schmidt algorithm to 21, , ,... nx x x . 
(There is also a technique for determining ng%  by developing a three term recurrence 
relation - see 
http://en.wikipedia.org/wiki/Orthogonal_polynomials#Recurrence_relations.) 
 
 The following lemma guarantees that the quadrature rule will be applicable to functions 
that may not be defined outside the domain of integration [ , ].a b  
 
Lemma: The zeros of ng% are simple and contained in ( , ).a b  
 
Proof: 

With appropriate renumbering let { }
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be the distinct odd-order zeros of ng% contained in 

( , ).a b Since the total number of zeros cannot exceed ,n and the number of zeros that are of 
odd-order and contained in ( , )a b must be less than or equal to that, we have .t n≤ Suppose 

.t n<  Consider the tht degree polynomial 1 2 3( ) ( )( ) ( )p x x x x x x x= − − −L . The zeros of 
the product np g⋅ %  that are in ( , )a b must have even order. Thus np g⋅ % does not change sign 
on ( , )a b . Also nv p g⋅ ⋅ % does not change sign on ( , )a b  and, having only a finite number of 
zeros, cannot have a zero integral. But by orthogonality, since p has degree less than ,n  

( ) ( ) ( ) 0
b
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v x p x g x dx =∫ % . This is a contradiction so .t n= We conclude that there are n odd-

ordered zeros of ng% contained in ( , ).a b The total multiplicity of all zeros (including in the 
complex plane) equals ,n  yet there are n distinct odd-ordered zeros of ng% contained in 
( , ).a b This precludes any multiple zeros. We conclude that all zeros of ng% are simple and 
contained in ( , ).a b ð 

 
 



Next we see that the linear system for the set { }
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 has a unique solution. We know that 

the polynomial interpolation problem has a unique solution so the matrix with ,i j  
component 1j
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non-singular diagonal matrix with positive ,j j  elements ( )jv x . Thus, it too is non-singular, 

and thus, by using the basis 11, ,..., nx x − for polynomials of degree 1n − , the linear system 

for the set { }
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 has a unique solution. The solution is basis independent, however, so if 

there is a unique solution with one basis there is a unique solution for any basis. 
 

Lastly we see that the sets { }
1

n

j j
w

=
and { }

1

n

j j
x

=
provide a quadrature rule for 2 1
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Proof: 
Any 2 1
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ng H −∈  must have the form g v p= ⋅ , where p is of degree 2 1.n− Divide p by ng%  

to get quotient s and remainder .r  That is: .np s g r= ⋅ +% Both s and r must have degree at 
most 1.n − We have  
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