Gaussian Quadrature Rules

Problem: Given a domain of integration Ω and a 2n parameter class of real-valued functions G (where n > 0) defined on Ω , determine $\{x_j\}_{j=1}^n$ and $\{w_j\}_{j=1}^n$ so that $\int_{\Omega} g = \sum_{j=1}^n w_j g(x_j)$, for all $g \in G$.

For the rule to be usable, it would advantageous to have $x_j \in \Omega$ since the elements of *G* may not be defined for $x_j \notin \Omega$.

Nonlinear Case: If the parameterization of the elements of *G* is expressed as $g(\cdot; a_1, a_2, ..., a_{2n})$, then the equations specifying $\{X_j\}_{i=1}^n$ and $\{W_j\}_{i=1}^n$ are

$$\int_{\Omega} g(\cdot; a_1, a_2, ..., a_{2n}) = \sum_{j=1}^n w_j g(x_j; a_1, a_2, ..., a_{2n}),$$

for all $a_1, a_2, ..., a_{2n}$.

Linear Case: If *G* is expressed by a basis as $\langle g_1, g_2, ..., g_{2n} \rangle$, then the equations specifying $\{x_j\}_{j=1}^n$ and $\{w_j\}_{j=1}^n$ are

$$\int_{\Omega} g_i = \sum_{j=1}^n W_j g(x_j).$$

Notice that even in the linear case, the unknowns $\{x_j\}_{j=1}^n$ enter the equations (in general) in a nonlinear fashion, so this does *not* result in a system of 2n linear equations in 2n unknowns.

However, the $\{w_j\}_{j=1}^n$ do enter in linear fashion, thus, if the $\{x_j\}_{j=1}^n$ could somehow be determined, then purely linear equations could be used to obtain $\{w_j\}_{j=1}^n$. This is what is key to what follows. In the case, where Ω is an interval of the real line and G is a space of "trended" polynomials of degree 2n-1, we can determine first the $\{x_j\}_{j=1}^n$ and then

 $\left\{w_{j}\right\}_{j=1}^{n}$ in a fairly straightforward fashion.

To that end, we first consider the notion of a trended polynomial space: Given an interval [a,b] and a function v positive on (a,b), the space of degree n polynomials with the trend v is

$$H_n^v = \{v \mid p | p \text{ is a polynomial of degree } n\}.$$

Thus, H_{2n-1}^{v} is a linear space of dimension 2n. We will see that these three steps determine a Gaussian quadrature rule on [a,b] for H_{2n-1}^{v} .

1. Find \tilde{g}_n , a polynomial of degree *n* orthogonal to all polynomials of lesser degree with respect to the inner product $(f, h) = \int_{a}^{b} v(x) f(x) h(x) dx$.

2. Find the zeros of \tilde{g}_n (there will be *n* distinct zeros on (a, b)) and set $\{x_i\}_{i=1}^n$ to these zeros.

3. Solve the linear system
$$\int_{\Omega} g_i = \sum_{j=1}^n w_j g_i(x_j)$$
 using some basis set $\langle g_1, g_2, ..., g_n \rangle$ for H_n^v .

The polynomial \tilde{g}_n can be found by applying the Gram-Schmidt algorithm to $1, x, x^2, ..., x^n$. (There is also a technique for determining \tilde{g}_n by developing a three term recurrence relation - see http://en.wikipedia.org/wiki/Orthogonal_polynomials#Recurrence_relations.)

The following lemma guarantees that the quadrature rule will be applicable to functions that may not be defined outside the domain of integration [a,b].

Lemma: The zeros of \tilde{g}_n are simple and contained in (a,b).

Proof:

With appropriate renumbering let $\{x_i\}_{i=1}^t$ be the distinct odd-order zeros of \tilde{g}_n contained in (a,b). Since the total number of zeros cannot exceed n, and the number of zeros that are of odd-order and contained in (a,b) must be less than or equal to that, we have $t \le n$. Suppose t < n. Consider the t^{th} degree polynomial $p(x) = (x - x_1)(x - x_2) \cdots (x - x_3)$. The zeros of the product $p \cdot \tilde{g}_n$ that are in (a,b) must have even order. Thus $p \cdot \tilde{g}_n$ does not change sign on (a,b). Also $v \cdot p \cdot \tilde{g}_n$ does not change sign on (a,b) and, having only a finite number of zeros, cannot have a zero integral. But by orthogonality, since p has degree less than n,

 $\int_{a}^{b} v(x)p(x)\tilde{g}_{n}(x)dx = 0$ This is a contradiction so t = n. We conclude that there are n odd-ordered zeros of \tilde{g}_{n} contained in (a,b). The total multiplicity of all zeros (including in the complex plane) equals n, yet there are n distinct odd-ordered zeros of \tilde{g}_{n} contained in (a,b). This precludes any multiple zeros. We conclude that all zeros of \tilde{g}_{n} are simple and contained in (a,b). \eth

Next we see that the linear system for the set $\{w_j\}_{j=1}^n$ has a unique solution. We know that the polynomial interpolation problem has a unique solution so the matrix with i, j component x_i^{j-1} for i, j = 1,...,n is nonsingular. Its transpose (the matrix with i, j component x_j^{i-1} for i, j = 1,...,n) must also be nonsingular. Finally, the matrix with i, j component $v(x_j)x_j^{i-1}$ for i, j = 1,...,n is simply the previous matrix post-multiplied by the non-singular diagonal matrix with positive j, j elements $v(x_j)$. Thus, it too is non-singular, and thus, by using the basis $\langle 1, x, ..., x^{n-1} \rangle$ for polynomials of degree n-1, the linear system for the set $\{w_j\}_{j=1}^n$ has a unique solution. The solution is basis independent, however, so if there is a unique solution with one basis there is a unique solution for any basis.

Lastly we see that the sets $\{w_j\}_{j=1}^n$ and $\{x_j\}_{j=1}^n$ provide a quadrature rule for H_{2n-1}^v .

Theorem: For the sets
$$\{w_j\}_{j=1}^n$$
 and $\{x_j\}_{j=1}^n$ so determined, $\int_a^b g = \sum_{i=1}^n w_j g(x_j)$ for all $g \in H_{2n-1}^v$.

Proof:

Any $g \in H_{2n-1}^{v}$ must have the form $g = v \cdot p$, where *p* is of degree 2n-1. Divide *p* by \tilde{g}_n to get quotient *s* and remainder *r*. That is: $p = s \cdot \tilde{g}_n + r$. Both *s* and *r* must have degree at most n-1. We have

$$\int_{a}^{b} g = \int_{a}^{b} v \cdot p = \int_{a}^{b} v \cdot (s\tilde{g}_{n} + r) = \int_{a}^{b} v \cdot s\tilde{g}_{n} + \int_{a}^{b} v \cdot r$$

But by orthogonality the first expression is zero, and thus

$$\int_a^b g = \int_a^b v \cdot r,$$

and since *r* has degree at most n-1

$$\int_a^b g = \sum_{i=1}^n w_j v(x_j) r(x_j).$$

Since every x_j is a zero of \tilde{g}_n , $v(x_j)r(x_j) = v(x_j)(s(x_j)g_n(x_j) + r(x_j)) = g(x_j)$, so

$$\int_{a}^{b} g = \sum_{i=1}^{n} w_{j} g(x_{j}) . \check{\mathbf{0}}$$