## Gaussian Quadrature Rules

Problem: $G$ iven a domain of integration $\Omega$ and a 2 n parameter class of real-valued functions $G($ where $n>0)$ defined on $\Omega$, determine $\left\{x_{j}\right\}_{j=1}^{n}$ and $\left\{w_{j}\right\}_{j=1}^{n}$ so that $\int_{\Omega} g=\sum_{j=1}^{n} w_{j} g\left(x_{j}\right)$, for all $g \in G$.

For the rule to be usable, it would advantageous to have $x_{j} \in \Omega$ since the elements of $G$ may not be defined for $\mathrm{x}_{\mathrm{j}} \notin \Omega$.

Nonlinear Case: If the parameterization of the elements of $G$ is expressed as $g\left(\cdot ; a_{1}, a_{2}, \ldots, a_{2 n}\right)$, then the equations specifying $\left\{\mathrm{x}_{\mathrm{j}}\right\}_{\mathrm{j}=1}^{\mathrm{n}}$ and $\left\{\mathrm{w}_{\mathrm{j}}\right\}_{\mathrm{j}=1}^{\mathrm{n}}$ are

$$
\int_{\Omega} g\left(\cdot ; a_{1}, a_{2}, \ldots, a_{2 n}\right)=\sum_{j=1}^{n} w_{j} g\left(x_{j} ; a_{1}, a_{2}, \ldots, a_{2 n}\right),
$$

for all $a_{1}, a_{2}, \ldots, a_{2 n}$.
Linear Case: If $G$ is expressed by a basis as $\left\langle g_{1}, g_{2}, \ldots, g_{2 n}\right\rangle$, then the equations specifying $\left\{\mathrm{x}_{\mathrm{j}}\right\}_{\mathrm{j}=1}^{\mathrm{n}}$ and $\left\{\mathrm{w}_{\mathrm{j}}\right\}_{\mathrm{j}=1}^{\mathrm{n}}$ are

$$
\int_{\Omega} g_{i}=\sum_{j=1}^{n} w_{j} g\left(x_{j}\right) .
$$

Notice that even in the linear case, the unknowns $\left\{\mathrm{x}_{\mathrm{j}}\right\}_{\mathrm{j}=1}^{\mathrm{n}}$ enter the equations (in general) in a nonlinear fashion, so this does not result in a system of $2 n$ linear equations in $2 n$ unknowns.

However, the $\left\{\mathrm{w}_{\mathrm{j}}\right\}_{\mathrm{j}=1}^{\mathrm{n}}$ do enter in linear fashion, thus, if the $\left\{\mathrm{x}_{\mathrm{j}}\right\}_{\mathrm{j}=1}^{\mathrm{n}}$ could somehow be determined, then purely linear equations could be used to obtain $\left\{\mathrm{w}_{\mathrm{j}}\right\}_{\mathrm{j}=1}^{\mathrm{n}}$. This is what is key to what follows. In the case, where $\Omega$ is an interval of the real line and $G$ is a space of "trended" polynomials of degree $2 n-1$, we can determine first the $\left\{x_{j}\right\}_{j=1}^{n}$ and then $\left\{\mathrm{w}_{\mathrm{j}}\right\}_{\mathrm{j}=1}^{\mathrm{n}}$ in a fairly straightforward fashion.

To that end, we first consider the notion of a trended polynomial space: Given an interval $[a, b]$ and a function $v$ positive on $(a, b)$, the space of degree $n$ polynomials with the trend $v$ is

$$
\mathrm{H}_{\mathrm{n}}^{\mathrm{v}}=\{\mathrm{v} \text { p p isapolynomialofdegree } \mathrm{n}\} .
$$

Thus, $\mathrm{H}_{2 \mathrm{n}-1}^{\mathrm{v}}$ is a linear space of dimension 2 n . . We will see that these three steps determine a $G$ aussian quadrature rule on $[a, b]$ for $H_{2 n-1}^{v}$.

1. Find $\tilde{g}_{n}$, a polynomial of degree $n$ orthogonal to all polynomials of lesser degree with respect to the inner product $(f, h)=\int_{a}^{b} v(x) f(x) h(x) d x$.
2. Find the zeros of $\tilde{g}_{n}$ (there will be $n$ distinct zeros on (a,b) ) and set $\left\{\mathrm{x}_{\mathrm{i}}\right\}_{i=1}^{n}$ to these zeros.
3. Solve the linear system $\int_{\Omega} g_{i}=\sum_{j=1}^{n} w_{j} g\left(x_{j}\right)$ using some basis set $\left\langle g_{1}, g_{2}, \ldots, g_{n}\right\rangle$ for $\mathrm{H}_{\mathrm{n}}^{\mathrm{v}}$.

The polynomial $\tilde{g}_{n}$ can be found by applying the Gram -Schmidt algorithm to $1, x, x^{2}, \ldots x^{n}$. (There is also a technique for determining $\tilde{g}_{n}$ by developing a three term recurrence relation - see
http:// en.wikipedia.org/ wiki/ Orthogonal_polynomials\#Recurrence_relations.)
The following lemma guarantees that the quadrature rule will be applicable to functions that may not be defined outside the domain of integration $[a, b]$.

Lemma: The zeros of $\tilde{g}_{n}$ are simple and contained in $(a, b)$.

## Proof:

With appropriate renumbering let $\left\{x_{j}\right\}_{j=1}^{t}$ be the distinct odd-order zeros of $\tilde{g}_{n}$ contained in $(a, b)$. Since the total number of zeros cannot exceed $n$, and the number of zeros that are of odd-order and contained in ( $a, b$ ) must be less than or equal to that, we have $t \leq n$. Suppose $t<n$. Consider the $t^{\text {th }}$ degree polynomial $p(x)=\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{3}\right)$. The zeros of the product $p \cdot \tilde{g}_{n}$ that are in $(a, b)$ must have even order. Thus $p \cdot \tilde{g}_{n}$ does not change sigm on ( $a, b$ ). Also $v \cdot p \cdot \tilde{g}_{n}$ does not change sign on $(a, b)$ and, having only a finite number of zeros, cannot have a zero integral. But by orthogonality, since $p$ has degree less than $n$, $\int_{a}^{b} v(x) p(x) \tilde{g}_{n}(x) d x=0$. This is a contradiction so $t=n$. We conclude that there are $n$ oddordered zeros of $\tilde{g}_{n}$ contained in $(a, b)$. The total multiplicity of all zeros (including in the complex plane) equals $n$, yet there are $n$ distinct odd-ordered zeros of $\tilde{g}_{n}$ contained in $(a, b)$.This precludes any multiple zeros. We conclude that all zeros of $\tilde{g}_{n}$ are simple and contained in ( $a, b$ ).

Next we see that the linear system for the set $\left\{w_{j}\right\}_{j=1}^{n}$ has a unique solution. We know that the polynomial interpolation problem has a unique solution so the matrix with $i, j$ component $x_{i}^{j-1}$ for $i, j=1, \ldots, n$ is nonsingular. Its transpose (the matrix with $i, j$ component $x_{j}^{i-1}$ for $i, j=1, \ldots, n$ ) must also be nonsingular. Finally, the matrix with $i, j$ component $v\left(x_{j}\right) x_{j}^{i-1}$ for $i, j=1, \ldots, n$ is simply the previous matrix post-multiplied by the non-singular diagonal matrix with positive $j, j$ elements $v\left(x_{j}\right)$. Thus, it too is non-singular, and thus, by using the basis $\left\langle 1, x, \ldots, x^{n-1}\right\rangle$ for polynomials of degree $n-1$, the linear system for the set $\left\{w_{j}\right\}_{j=1}^{n}$ has a unique solution. The solution is basis independent, however, so if there is a unique solution with one basis there is a unique solution for any basis.

Lastly we see that the sets $\left\{w_{j}\right\}_{j=1}^{n}$ and $\left\{x_{j}\right\}_{j=1}^{n}$ provide a quadrature rule for $H_{2 n-1}^{v}$.

Theorem: For the sets $\left\{w_{j}\right\}_{j=1}^{n}$ and $\left\{x_{j}\right\}_{j=1}^{n}$ so determined, $\int_{a}^{b} g=\sum_{i=1}^{n} w_{j} g\left(x_{j}\right)$ for all $g \in H_{2 n-1}^{v}$.

## Proof:

Any $g \in H_{2 n-1}^{v}$ must have the form $g=v \cdot p$, where $p$ is of degree $2 n-1$. Divide $p$ by $\tilde{g}_{n}$ to get quotient $s$ and remainder $r$. That is: $p=s \cdot \tilde{g}_{n}+r$. Both $s$ and $r$ must have degree at most $n-1$. We have

$$
\int_{a}^{b} g=\int_{a}^{b} v \cdot p=\int_{a}^{b} v \cdot\left(s \tilde{g}_{n}+r\right)=\int_{a}^{b} v \cdot s \tilde{g}_{n}+\int_{a}^{b} v \cdot r
$$

But by orthogonality the first expression is zero, and thus

$$
\int_{a}^{b} g=\int_{a}^{b} v \cdot r,
$$

and since $r$ has degree at most $n-1$

$$
\int_{a}^{b} g=\sum_{i=1}^{n} w_{j} v\left(x_{j}\right) r\left(x_{j}\right)
$$

Since every $x_{j}$ is a zero of $\tilde{g}_{n}, v\left(x_{j}\right) r\left(x_{j}\right)=v\left(x_{j}\right)\left(s\left(x_{j}\right) g_{n}\left(x_{j}\right)+r\left(x_{j}\right)\right)=g\left(x_{j}\right)$, so

$$
\int_{a}^{b} g=\sum_{i=1}^{n} w_{j} g\left(x_{j}\right) .
$$

