For Thursday, Sept. 20, prove the following lemma:

Lemma: Given $a<b$, a function g with N continuous derivatives on $[a, b]$ and zeros on $[a, b]$ of total multiplicity $N+1$, then there exists a point $\xi \in[a, b]$ so that $g^{(N)}(\xi)=0$.
(Remember a function g such that $g^{(j)}\left(x_{i}\right)=0$, for $i=1, \ldots, n$ and $j=0, \ldots, k_{i}$, is said to have zeros of total multiplicity $\sum_{i=1}^{n}\left(k_{i}+1\right)$.)

And then fill in the spaces and prove the theorem:

Theorem: Given $a<b$, a function h with \qquad continuous derivatives on $[a, b]$, a polynomial f of degree \qquad so that

$$
f^{(j)}\left(x_{i}\right)=h^{(j)}\left(x_{i}\right) \text { for } i=1, \ldots, n \text { and } j=0, \ldots, k_{i},
$$

where the set $x_{i} \in[a, b]$ and are distinct, $k_{i} \geq 0$ for $i=1, \ldots, n$, and $N=\sum_{i=1}^{n}\left(k_{i}+1\right)$ and then for $x \in[a, b]$ there exists a point $\xi \in[a, b]$ so that

$$
h(x)-f(x)=
$$

