For Thursday, Sept. 20, prove the following lemma:

Lemma: Given a < b, a function g with N continuous derivatives on [a, b] and zeros on [a, b] of total multiplicity N+1, then there exists a point $\xi \in [a, b]$ so that $g^{(N)}(\xi) = 0$.

(Remember a function g such that $g^{(j)}(x_i) = 0$, for i = 1, ..., n and $j = 0, ..., k_i$, is said to have zeros of total multiplicity $\sum_{i=1}^{n} (k_i + 1)$.)

And then fill in the spaces and prove the theorem:

Theorem: Given a < b, a function h with _____ continuous derivatives on [a, b], a polynomial f of degree _____ so that $f^{(j)}(x_i) = b^{(j)}(x_i)$ for i = 1, ..., n and $j = 0, ..., k_i$,

where the set $x_i \in [a, b]$ and are distinct, $k_i \ge 0$ for i = 1, ..., n, and $N = \sum_{i=1}^{n} (k_i + 1)$ and then for $x \in [a, b]$ there exists a point $\xi \in [a, b]$ so that

$$h(x) - f(x) = _$$