Three Approaches to Solving Least Squares Problems

Problem: Given $Z=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ and the four functions g_{1}, g_{2}, g_{3}, and f described by this table:

	g_{1}	g_{2}	g_{3}	f
x_{1}	1	1	1	1
x_{2}	.01	0	0	0
x_{3}	0	.01	0	0
x_{4}	0	0	.01	0

Find the best approximation to f from the span of g_{1}, g_{2}, and g_{3} in the least squares sense. Assume the work is done using three digit rounding floating point arithmetic. (Thus, in particular, $f l(1+.0001)=1$.)

1. Normal Equations:

Since $f l(1+.0001)=1$, we obtain the matrix $A^{T} A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$, which is singular. We cannot determine a unique solution.

2. Classical Gram-Schmidt:

$$
\begin{array}{cccc} & \tilde{g}_{1} & \tilde{g}_{2} & \tilde{g}_{3} \\ x_{1} & 1 & 0 & 0\end{array}
$$

After performing the orthonormalization, we have $\begin{array}{ccccc}x_{2} & .01 & -.709 & -.709 \text {. For } \\ x_{3} & 0 & .709 & 0 \\ x_{4} & 0 & 0 & .709\end{array}$
coefficients, we calculate $\left[\begin{array}{l}a_{1}^{*} \\ a_{2}^{*} \\ a_{3}^{*}\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$. The residual $f-g^{*}$ on Z is $\left[\begin{array}{c}0 \\ .01 \\ 0 \\ 0\end{array}\right]$ whose norm is .01

3. Modified Gram-Schmidt with coefficients computed directly:

| | \tilde{g}_{1} | \tilde{g}_{2} | \tilde{g}_{3} |
| :---: | :---: | :---: | :---: | :---: |
| x_{1} | 1 | 0 | 0 |

After performing the orthonormalization, we have $x_{2} \quad .01$-. 709 -. 407 . For

$$
\begin{array}{llll}
x_{3} & 0 & .709 & -.412
\end{array}
$$

$$
\begin{array}{llll}
x_{4} & 0 & 0 & .82
\end{array}
$$

coefficients, we again calculate $\left[\begin{array}{l}a_{1}^{*} \\ a_{2}^{*} \\ a_{3}^{*}\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$. The residual $f-g^{*}$ on Z is again $\left[\begin{array}{c}0 \\ .01 \\ 0 \\ 0\end{array}\right]$ whose
norm is . 01
4. Modified Gram-Schmidt with coefficients computed by modification:

Now we have $\left[\begin{array}{l}a_{1}^{*} \\ a_{2}^{*} \\ a_{3}^{*}\end{array}\right]=\left[\begin{array}{l}.331 \\ .334 \\ .335\end{array}\right]$. The residual $f-g^{*}$ on Z is $\left[\begin{array}{c}0 \\ .00331 \\ .00334 \\ .00335\end{array}\right]$ whose norm is
.005773578...

5. Exact Solution:

The exact solution is $x=\frac{10000}{30001}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$. The residual $f-g^{*}$ on Z is $\left[\begin{array}{c}1 / 30001 \\ 100 / 30001 \\ 100 / 30001 \\ 100 / 30001\end{array}\right]$ whose
norm is $.005773311 \ldots$

