Three Approaches to Solving Least Squares Problems

Problem: Given $Z = \{x_1, x_2, x_3, x_4\}$ and the four functions g_1, g_2, g_3 , and f described by this table:

	g_1	g_2	g_3	f
x_1	1	1	1	1
<i>x</i> ₂	.01	0	0	0
<i>x</i> ₃	0	.01	0	0
<i>x</i> ₄	0	0	.01	0

Find the best approximation to f from the span of g_1, g_2 , and g_3 in the least squares sense. Assume the work is done using three digit rounding floating point arithmetic. (Thus, in particular, fl(1+.0001)=1.)

1. Normal Equations:

Since
$$fl(1+.0001) = 1$$
, we obtain the matrix $A^T A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$, which is singular. We

cannot determine a unique solution.

2. Classical Gram-Schmidt:

3. Modified Gram-Schmidt with coefficients computed directly:

 $\begin{array}{c}
\tilde{g}_{1} & \tilde{g}_{2} & \tilde{g}_{3} \\
x_{1} & 1 & 0 & 0
\end{array}$ After performing the orthonormalization, we have x_{2} .01 -.709 -.407. For x_{3} 0 .709 -.412 x_{4} 0 0 .82 $\begin{array}{c}
 \text{coefficients, we again calculate} \begin{bmatrix}
a_{1}^{*} \\
a_{2}^{*} \\
a_{3}^{*}
\end{bmatrix} = \begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix}. \text{ The residual } f - g^{*} \text{ on } Z \text{ is again } \begin{bmatrix}
0 \\
.01 \\
0 \\
0
\end{bmatrix} \text{ whose }$

norm is .01

4. Modified Gram-Schmidt with coefficients computed by modification:

Now we have
$$\begin{bmatrix} a_1^* \\ a_2^* \\ a_3^* \end{bmatrix} = \begin{bmatrix} .331 \\ .334 \\ .335 \end{bmatrix}$$
. The residual $f - g^*$ on Z is $\begin{bmatrix} 0 \\ .00331 \\ .00334 \\ .00335 \end{bmatrix}$ whose norm is

.005773578...

5. Exact Solution:

The exact solution is
$$x = \frac{10000}{30001} \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$
. The residual $f - g^*$ on Z is $\begin{bmatrix} 1/30001\\100/30001\\100/30001\\100/30001 \end{bmatrix}$ whose

norm is .005773311...