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The classic paper "Smoothing by Spline Functions", Numerische Mathematik 10, 177-183 (1967) by 
Christian Reinsch showed that natural cubic splines were the solutions to a novel formulation of the 
data smoothing problem. Reinsch employed what he called "standard methods of the calculus of 
variations" to obtain his results and this included the use of Euler-Lagrange equations. It is my intent 
here to expand that derivation and to avoid any reference to the calculus of variations. The material 
here simply replaces the first paragraph of Section 3 of Reinsch's paper. I have tried to present it so 
that only calculus and linear algebra are required for understanding. 
 
1. The Problem 
 
Consider that we are given a set of triples {( 1, , )}ni i i ix y yδ =  and a nonnegative value such that  S
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In the very terse first paragraph of Section 3, Reinsch showed:  
1. Any solution to the problem must be a natural cubic spline with knots { } , 1

n
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2. For , the gaps in the third derivatives of a solution are proportional to the weighted 
residuals in the approximations.  That is for some non-negative value of 
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for  where the subscripts + and -  indicate right- and left-sided derivatives, 
respectively, and the interpretation at the endpoints is that 

1,2,..., ,i = n
1( ) 0f x −′′′ =  and ( ) 0nf x +′′′ = . 

 
2. The Expansion 
 
We begin with a lemma that relates integrals of natural cubic splines to their third derivative gaps. 
 
 Lemma 1:  If  is a natural cubic spline with knots g 1 2 nx x x< < <  and l is a function with two 
continuous derivatives on [ ,1 ]nx x  then  

  
1

1

( ) ( ) ( )( ( ) ( ) ),
nx n

i i i
ix

g x l x dx l x g x g x+ −
=

′′ ′′ ′′′ ′′′= −∑∫
where  and . 1( ) 0g x −′′′ = ( ) 0ng x +′′′ =
 



Proof: Although  is not continuous on [ ,g′′′ 1 ]nx x  , it is continuous on each interval 1( , )i ix x + , for  
.  Integrating by parts on each of the smaller intervals we find  1,2,..., ,i = n
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However the terms within the summation can be separated and all of the products  (except 
the first and last) will cancel each other resulting in 

( ) ( )ig x l x′′ ′
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 But from the natural end-conditions of  and the fact that g g′′′  is piece-wise constant on each of the 
intervals 1( , )i ix x + , we have  
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Finally by noticing that , we obtain 1( ) ( )ig x g x− + −′′′ ′′′=
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Reinsch's first proposition is an easy consequence of Lemma 1.  

 
Any solution to the problem must be a natural cubic spline with knots { } 1
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Proof: If f  is a solution to the problem and  is a natural cubic spline that interpolates g f  on the set 

 (i.e.,  for i n ), then  certainly satisfys  1{ }ni ix = ( ) ( )i ig x f x= 1,2,...,= g

 
2

1

( ) .
n

i i

i i

g x y S
yδ=

 −
≤ 

 
∑  

since f  does. Furthermore, expressing f  as ( )f g g− + , we have  
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But from Lemma  1 and the interpolation conditions, we have  
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The first term is clearly non-negative, and thus  
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Furthermore, the inequality is strict (and thus the solution must be a natural cubic spline) unless  
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However for this to happen  on [ ,0f g′′ ′′− ≡ 1 ]nx x . Integrating twice, we have that f g− must be a 
linear polynomial on [ ,1 n ]x x , yet from the interpolation conditions, that linear must be  identically 
zero. Thus f  cannot be a solution to the problem without being a natural cubic spline with knots 

 . � 1{ }ni ix =

 
The next lemma simply says that unless two vectors have exactly the same direction then we can find a 
vector with a positive component in direction of one but a negative component with respect to the 
other.  
 
Lemma 2. Let  and  be non-zero n-vectors.  If for no non-negative scalar u v p  does u pv= , then 
there exists an n-vector  so that  and w 0Tw u > 0Tw v < . 
 
Proof: Let z  denote the euclidean norm .  From the Cauchy-Schwartz inequality, since  
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The vector  will be used to show that unless a particular function is a solution to our problem, slight 

perturbations can be made that reduce the objective function   without violating the 

constraints 
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Reinsch's second proposition is 
 

If  for some non-negative value of 0,S > p then for i n1,2,...,= , 
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Proof: Suppose for some natural cubic  spline  with knots { }g 1

n
i ix =   there is no non-negative value of 
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for . In particular, this implies that the quantities 1,2,...,i = n i( ) ( )ig x g x− +′′′ ′′′−  are not all zero. Either 
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zero.  Lemma 2 then applies and we can find values  for iiw 1,2,...,n=  so that  
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If we let  be any function with two continuous derivatives on [ ,l 1 ]nx x  that interpolates the data  pairs 
 (i.e., l x , for ), then   1{( , )i i ix w }n= ( )i w= i 1,2,...,i n=
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Now for any scalar λ  
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Notice that for all positive values of λ  the middle term on the right-hand side is negative and, for 
sufficiently small positive values of λ , the sum of the last two terms is negative.  Thus for those values 
of λ  
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Again for all positive values of λ  the middle term on the right-hand side is negative and, for 
sufficiently small positive values of λ , the sum of the last two terms is negative.  If  
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then for sufficiently small positive values of λ  
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The conclusion is that, if  does not satisfy the proportionality relation of the hypothesis, then a 
function 

g
g lλ+  satisfies the constraints and reduces the objective function. Thus  could not have 

been a solution.  
g

 

Alternatively, we assume that all of the quantities 2
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for sufficiently small positive values of λ . However since  for small values of 0,S > λ  
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So once again,  could not be the solution. � g
 
The final part of this expansion of Reinsch’s derivation shows that, if at the solution . 
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then 
 ( ) ( ) 0,i if x f x− +′′′ ′′′− =  
for   (i.e., the parameter 1,2,..., ,i = n 0p = ), since otherwise the argument could be repeated to 
produce a better solution. Of course, these conditions result in no gaps in the third derivatives. A 
solution must then be a single cubic. However the natural end conditions then imply that the cubic 
solution is actually a linear.  The result is that either a solution rests at the edge of the constraints 
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or is a straight line. 
  
 
Additional Note on Reinsch’s Paper: 
 
At the end of Section 4, Reinsch’s presents an iterative algorithm and then a final paragraph where he 
comments that one could also apply a Newton’s method to find the reciprocal of p . With that, he 
claims, “When tested with few examples, convergence was always reached with a slightly reduced 
number of iterations.”.  Although he does not state it explicitly, the ALGOL code in Section 5, actually 
implements the iteration to find the reciprocal of p .  
 
As Reinsch states in the second paper, "Smoothing by Spline Functions II", Numerische Mathematik 16  
451-454 (1971), the iteration to find the reciprocal of p  may not converge.  There he suggests that 
instead of using Newton’s method on the equation , that faster (and guaranteed) 
convergence is obtained with the equation 1/ .  The only change that this would require 
from the algorithm in Section 4 of the first paper, is the replacement of the Newton update 

1/ 2( )F p S=
21/S −( )F p =

 1/ 2( ( ) ) /( )p p e Se f p g← + − − ×  
by  
 1/ 2(( / ) 1) /( )p p e e S f p g← + − − × . 


