Lemma: Given $a<b$, a function g with n continuous derivatives on $[a, b]$ and $n+1$ zeros on $[a, b]$ then there exists a point $\xi \in[a, b]$ so that $g^{(n)}(\xi)=0$.

Proof:

We shall prove that if a function g on $[a, b]$ has m continuous derivatives and p zeros, then the derivative g^{\prime} has $m-1$ continuous derivatives and $p-1$ zeros on [a, b. Inductively this proves the lemma. Let the zeros of g be $w_{1}<w_{2}<\cdots<w_{p}$. On each open interval $\left(w_{i}, w_{i+1}\right) g^{\prime}$ must have a zero by Rolle's Theorem. That is a total of $p-1$ distinct zeros and they all lie in $[a, b]$. Inductively we have then that $g^{(n)}$ has at least on zero in $[a, b]$.

Theorem: Given $a<b$, a function b with n continuous derivatives on [$a, b]$, a polynomial f of degree $n-1$ so that

$$
f\left(x_{i}\right)=h\left(x_{i}\right) \text { for } i=1, \ldots, n,
$$

where the set $x_{i} \in[a, b]$ and are distinct, then for $x \in[a, b]$ there exists a point $\xi \in[a, b]$ so that

$$
h(x)-f(x)=\frac{\left(x-x_{1}\right) \cdots\left(x-x_{n}\right)}{n!} h^{(n)}(\xi)
$$

Proof:

Consider any $x \in[a, b]$. If $x=x_{i}$ for some i then the result clearly holds since both sides are zero. Now suppose x is distinct from any of the x_{i} and consider the function

$$
l(z)=h(z)-f(z)-\frac{(h(x)-f(x))\left(z-x_{1}\right) \cdots\left(z-x_{n}\right)}{\left(x-x_{1}\right) \cdots\left(x-x_{n}\right)} .
$$

Since the difference $h(z)-f(z)$ has a zero at x_{i} and so does the term $\left(z-x_{i}\right)$, thus l itself has a zero at x_{i}. Lastly, it's easy to see that $l(x)=0$. We then have that l has $n+1$ zeroes on $[a, b]$. Since h has n continuous derivatives so does l. The lemma can then be applied to guarantee there exists a point $\xi \in[a, b]$ so that $l^{(n)}(\xi)=0$. But since f is of degree $n-1$, its nth derivative is everywhere zero. Also, the product $\left(z-x_{1}\right) \cdots\left(z-x_{n}\right)$, if expanded, would be of the form $z^{n}+\bar{p}$ for some polynomial \bar{p} of degree $n-1$. The nth derivative of this product is the constant $n!$. Thus,

$$
0=l^{(n)}(\xi)=h^{(n)}(\xi)-0-\frac{(h(x)-f(x)) n!}{\left(x-x_{1}\right) \cdots\left(x-x_{n}\right)}
$$

By rearranging terms we obtain

$$
h(x)-f(x)=\frac{\left(x-x_{1}\right) \cdots\left(x-x_{n}\right)}{n!} h^{(n)}(\xi)
$$

