
Best Approximation on Normed Linear Spaces 
 
Theorem: Let S be a normed linear space with norm . , G be a finite dimensional subspace of S, and 
f an element of S.  There exists an element g * of G that minimizes f g−  over all elements g G∈ . 
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We will show that N is a continuous function on R n , that its infimum over R n  is assumed 
on a smaller set, and that this smaller set is closed and bounded. That will guarantee that 
the minimum of N is assumed.  The coefficients ( , ,..., )* * *a a an1 2  at this minimum are those 

of the element g * of G that minimizes f g− ; that is g a gi i
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To see that N is continuous, notice that 
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The function M a a a a gn i i
i
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Consider its minimum M  on the compact set  
{( , ,..., ) | max{| |,| |,..., | |} }a a a a a an n1 2 1 2 1= .  

If M = 0 , then there is a non-zero linear combination of the basis elements ( , ,..., )g g gn1 2  
that is zero. Since this contradicts their linear independence, this is a contradiction and 
M > 0 .  By linearity, it is easy now to show that 

a g M a a ai i
i

n

n
=
∑ ≥

1
1 2max{| |,| |,...,| |}  

for all sets of coefficients ( , ,..., )a a an1 2 .  We may conclude that the set  
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 is bounded.  It is obviously closed and thus compact.  Since continuous functions assume 
their minima on compact sets, the minimum of N  over A is assumed at some set of 
coefficients ( , ,..., )* * *a a an1 2 .   
 



Suppose a set of coefficients ( , ,..., )a a a An1 2 ∉ .  Then 
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Since the set of coefficients ( , ,..., )0 0 0 ∈ A , we have 
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for all ( , ,..., )a a a An1 2 ∉ .  We conclude that the minimum of N over all R n  is assumed at 

( , ,..., )* * *a a an1 2  and that g a gi i
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 minimizes f g−  over all elements g G∈ . 


