Best Approximation on N ormed Linear Spaces

Theorem: Let S be a normed linear space with norm I.II, G be a finite dimensional subspace of S, and f an element of S . There exists an element g^{*} of G that minimizes $\|f-g\|$ over all elements $g \in G$.

Proof: Let $\left\langle g_{1}, g_{2}, \ldots, g_{n}\right\rangle$ be a basis for G and define $N\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\left\|f-\sum_{i=1}^{n} a_{i} g_{i}\right\|$.
We will show that N is a continuous function on R^{n}, that its infimum over R^{n} is assumed on a smaller set, and that this smaller set is closed and bounded. That will guarantee that the minimum of N is assumed. The coefficients $\left(a_{1}^{*}, a_{2}^{*}, \ldots, a_{n}^{*}\right)$ at this minimum are those of the element g^{*} of G that minimizes $\|f-g\|$; that is $g^{*}=\sum_{i=1}^{n} a_{i}^{*} g_{i}$.

To see that N is continuous, notice that

$$
\begin{aligned}
& \mid N\left(a_{1}, a_{2}, \ldots, a_{n}\right)- N\left(b_{1}, b_{2}, \ldots, b_{n}\right)\left|=\left\|f-\sum_{i=1}^{n} a_{i} g_{i}\right\|-\left\|f-\sum_{i=1}^{n} b_{i} g_{i}\right\|\right| \\
& \leq\left\|\left(f-\sum_{i=1}^{n} a_{i} g_{i}\right)-\left(f-\sum_{i=1}^{n} b_{i} g_{i}\right)\right\|=\left\|\sum_{i=1}^{n}\left(a_{i}-b_{i}\right) g_{i}\right\| \\
& \leq\left(\sum_{i=1}^{n}\left\|g_{i}\right\|\right) \max \left\{\left|a_{1}-b_{1}\right|,\left|a_{2}-b_{2}\right|, \ldots,\left|a_{n}-b_{n}\right|\right\} .
\end{aligned}
$$

The function $M\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\left\|\sum_{i=1}^{n} a_{i} g_{i}\right\|$ is obviously also continuous and non-negative. Consider its minimum \underline{M} on the compact set

$$
\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid \max \left\{\left|a_{1}\right|,\left|a_{2}\right|, \ldots,\left|a_{n}\right|\right\}=1\right\} .
$$

If $\underline{M}=0$, then there is a non-zero linear combination of the basis elements ($g_{1}, g_{2}, \ldots, g_{n}$) that is zero. Since this contradicts their linear independence, this is a contradiction and $\underline{M}>0$. By linearity, it is easy now to show that

$$
\| \sum_{i=1}^{n} a_{i} g_{i} \mid \geq \underline{M} \max \left\{\left|a_{1}\right|,\left|a_{2}\right|, \ldots,\left|a_{n}\right|\right\}
$$

for all sets of coefficients $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$. We may conclude that the set

$$
A=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right)\left\|\sum_{i=1}^{n} a_{i} g_{i}\right\| \leq 2\|f\|\right\}
$$

is bounded. It is obviously closed and thus compact. Since continuous functions assume their minima on compact sets, the minimum of N over A is assumed at some set of coefficients $\left(a_{1}^{*}, a_{2}^{*}, \ldots, a_{n}^{*}\right)$.

Suppose a set of coefficients $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \notin A$. Then $\left\|\sum_{i=1}^{n} \mathrm{a}_{\mathrm{i}} \mathrm{g}_{\mathrm{i}}\right\|>2\|\mathrm{f}\|$. But then also $N\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\left\|f-\sum_{i=1}^{n} a_{i} g_{i}\right\| \geq\left\|\sum_{i=1}^{n} a_{i} g_{i}\right\|-\|f\|>2\|f\|-\|f\|=\|f\|=N(0,0, \ldots, 0)$.
Since the set of coefficients $(0,0, \ldots, 0) \in A$, we have

$$
N\left(a_{1}^{*}, a_{2}^{*}, \ldots, a_{n}^{*}\right) \leq N(0,0, \ldots, 0)<N\left(a_{1}, a_{2}, \ldots, a_{n}\right)
$$

for all $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \notin A$. We conclude that the minimum of N over all R^{n} is assumed at $\left(a_{1}^{*}, a_{2}^{*}, \ldots, a_{n}^{*}\right)$ and that $g^{*}=\sum_{i=1}^{n} a_{i}^{*} g_{i}$ minimizes $\|f-g\|$ over all elements $g \in G$.

